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Abstract

In this paper, two fast methods are proposed for computation of mean and variance of a random variable
which is logarithm of two log-normally distributed random variables. It is shown that mean and variance
can be computed using only one dimensional numerical integration method. The speed of the proposed
algorithms is compared with the baseline algorithm. Simulation results showed that the first proposed
method decreases the execution time by an average of 43.98 %. Simulation results also showed that the
second proposed method is faster than the first proposed method for the variances greater than 0.325.

Keywords: Sum of log-normally distributed random variables, Parallel model combination, Numerical
integration, Robustness.

iki Bagimsiz Log-Normal Dagitilmis Rastgele Degiskenin Toplamimin Logaritmasi
Olan Rastgele Degiskenin Parametrelerinin Hizh Hesaplanmasi

Oz

Bu calismada, iki log-normal dagiliml rasgele degiskenin logaritmas: olan rasgele degiskenin ortalama ve
varyansini hesaplamak igin iki hizli metot sunulmustur. Ortalama ve varyansin sadece bir boyutlu
niimerik integral metodu ile hesaplanabilecegi gosterilmistir. Onerilen algoritmanin iz temel
algoritmanin hizi ile Karsilastirilmigtir. Benzetim sonuclari 6nerilen ilk yontemin calisma zamanim
ortalama %43,98 azalttigin1 gdstermistir. Benzetim sonuclari ayrica 6nerilen ikinci metodun 0,325’ten
blyuk varyanslar icin birinci yontemden daha hizl oldugunu gostermistir..

Anahtar Kelimeler: Log-normal dagilimli rasgele degiskenlerin toplami, Paralel model kombinasyonu,
Nimerik integral, Gurbuzlik
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Fast Computation of Parameters of the Random Variable that is Logarithm of Sum of Two Independent Log-normally

Distributed Random Variables

1. INTRODUCTION

The parameters of a random variable that
represents the log of sum of two log-normally
distributed random variables, are required to be
estimated for some signal processing applications.
These parameters can be used for estimating the
distribution of sum of log normally distributed
random variables [1,2], and for the Parallel Model
Combination (PMC) [3-6] which is our main case
for developing the methods proposed in this paper.

The sum of log-normal random variables has
applications in many fields such as
telecommunication [1,7,8], financial modelling [9],
physics [10], and so forth. Many techniques have
been developed for estimating distribution of sum
of log-normally distributed random variables [1,2,
7,8]. Schwartz-Yeh [1] method and the method
proposed in [2] need to use parameters of log of
sum of log-normally distributed random variables.
Therefore, methods proposed in this paper for
estimating the parameters of the log of sum of two
log-normally distributed random variables can be
used for estimating the distribution of sum of log-
normally distributed random variables [1,2].

The PMC is a technique for estimating the noisy
speech models using the noise and clean speech
models. Noise severely degrades the performance
of speech recognition systems [11]. The PMC is
one of the most effective techniques used for
speech recognition under noisy conditions. In
PMC, the noisy speech model parameters are
estimated using the clean speech models and noise
model. Estimating the noisy speech model
parameters is almost the same as estimating the
parameters of a random variable which is obtained
by taking the logarithm of the sum of two log-
normally distributed random variables. Therefore,
the method proposed in this paper can be used as a
part of numerical integration based PMC.

There are three different PMC techniques which
are log-normal approximation [3], data-driven
approach [4,5] and numerical integration [6]. The
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numerical integration technique estimates the
noisy speech model parameters with the highest
accuracy among the other PMC methods but
demands the highest computation time. In this
paper, we propose two new fast methods which
can be used in PMC, for estimating the parameters
(mean and variance) of logarithm of random
variable which is obtained by adding two log-
normally distributed random variables. Numerical
integration-based PMC method is explained in [6],
however, the accuracy of the estimated parameters
and computational complexity of the numerical
integration method are not discussed in this paper.
In this paper, we discuss the accuracy and
computational complexity of the proposed
numerical integration methods.

2. ADDING TWO LOG-NORMALLY
DISTRIBUTED RANDOM
VARIABLES

Let S;and N; be two independent Gaussian random
variables with means g, u, and variances oy,
o, respectively. We define a new random
variable 0; such that

O, =log(e" +e" ) =5, +log(L+e* ) )

where X;=N;-S;. X; is also a Gaussian random
variable with mean H =My, M and variance
G%(i=(5]%i+(5§i since S; and N; are Gaussian random
variables. We want to compute the mean and
variance of the random variable O;. There is no
closed form of solution for mean and variance.
Two dimensional numerical integration can be
used to compute mean and variance. However,
dimension of integration can be reduced to one as
follows. Let us drop the index i for the sake of
simplicity. The mean is

1, =p, +E[ log(1+e*) | )

The variance is;
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=07 +E| 20° () log(L-+e" )+ (log(1+e"))’ |
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where p=

X

3. COMPUTING THE MEAN AND
VARIANCE USING GAUSS-
HERMITE QUADRATURE

If the function f(x) is well approximated by a
polynomial of order 2N-1, then Gauss-Hermite
quadrature is a good estimate of the integral

f f(x)e™

+00

J'f(x)e‘xz ziNzlwif(xi) ()

—0

In this case where x; and w; are Gauss-Hermite
abscissa and weights, respectively [12] and N is
the number of abscissa and weights used. It is
known that if x; is an abscissa then —x; is also an
abscissa [12]. This property of abscissa reduces the
number of exponents by almost a factor of two
since e* = 1/e~*i. The accuracies of u, and o2
which are computed using Equation 4 depend on
how well the function f(x) is approximated by a
polynomial of order 2N-1. In order to compute u,
and o2 using Equation 4, We need to compute the
following expectations:

+ log (1+ g o )

E[log(1+e)]= I N

eXdx  (5)
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T(log(u.j_w =)

e*dx (6)

E[(Iog(1+ex))2}=

and
Iog 1+e“* o x)

E[(X n, )log(1+e* ) J.\/Zs Xfe “dx (7)

Computations of exponents and logarithms
demand most of the computation time in
computing u, and o2 using Gauss-Hermite
quadrature. Therefore, we consider comparing
only the number of exponents and logarithms. In
order to compute u, and o2 using Equations 2-7
with N abscissa, computations of N logarithms,
and (]N/2]+1) exponents are required, where|x] is
the floor of x. In this paper, the algorithm which
uses Equations 2-7 to compute u, and o2 is
referred as the baseline method.

3. FAST COMPUTATION OF MEAN
AND VARIANCE

In this paper, two methods for fast computation of
the mean (u ) and variance (o) are proposed. The
first method is based on approximating the
function log(1+e*) for computing mean and
variance using Gauss-Hermite quadrature. The
latter method is based on approximating the
functions log(1+e*), (log(1+e*))?, and the
complementary error function erfe(x) for
computing u, and c2.

We need to decide on the error criterion for
approximating these functions. In this paper,
maximum relative error is minimized to find
approximate expressions for these functions. If f(x)
is the function and f(x) is the approximation of
f(x), then the relative error is defined as

f(x)-f(x
URIU ©
(x)
log(1+¢e*) can be approximated as
263
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log(1+e*) ~ iaieix = iai (e )i forx<o0 9)
i=1 i=1

where a;'s are chosen to minimize the error for the
given criteria, and K is the number of coefficients.
One exponent, one logarithm and one addition are
needed to compute log(1+e*). However, the
number of arithmetic operations can be replaced
by one exponent, (K-1) additions, an 2(K-1)d
multiplications using equation (9). For x>0,
log(1+e*) can be computed using the equality

log(1+e*)=x+log(1+e™). Similarly, [log(1+e")]?
can be approximated as

2 Mo
[Iog(1+ex)J ~ Y be” forx <0 (10)

i=2

where b;'s are chosen to minimize the error for the
given criteria, (M —1) is the number of
coefficients. erfc(x) can be approximated using

R
erfc(x) ~e™ det forx>0 (11)
i=1

1 . ..
where t=m and R is the number of coefficients.

a, and c¢;'s are chosen to minimize the error
between erfc(x) and the approximation of erfc(x)
for the given criteria. erfc(x) can be computed
using erfe(x)=2- erfc(-x) for x<0. For all the
functions that were approximated, maximum
relative error is minimized, and Parks-McClellan
[13] algorithm is used to find the approximations
of these functions. Table | shows the maximum
relative approximation errors in percentage for 3,
4, 5 and 6 coefficients for the functions log(1+¢"),
(log(1+€*))?, and erfc(x).

Table 1. Maximum relative approximation errors

in percent
#of coefficients 3 4 5 6
log(1+€*) 0.283 | 0.039 | 0.006 | 0.0008
2
[log(l+e*) | | 0948 | 0.152 | 0.024 | 0.0039
erfc(x) 0.237 | 0.053 | 0.009 |0.0017
264

4.1. Fast Computation of Mean and Variance
Using Gauss-Hermite Quadrature

The baseline method requires computations of N
logarithms, and ([N/2]+1) exponents for
computing p, and o2 where Nis the number of
abscissa. These (|[N/2]+1) exponents, and
N logarithms can be replaced by only (]N/2] + 1)
exponents by approximating the log(1+e”x*‘5“x")
using Equation 9. This approximation significantly
reduces computational complexity. We call this
algorithm as fast version of Gauss-Hermite
quadrature (fast version of baseline) method for
computing p, and o2 in this paper.

4.2. Fast Computation of Mean and Variance
by Approximating the Functions

Gaussian-Quadrature method approximates the
integral. However, in this section, we propose to
approximate the functions for fast computation of
mean and variance. In order to compute y, and o3,
we need to compute expected values of
[(X-p,)log(1+€¥)], log(1 +e*), and (log(1 +
eX))2. Approximate values of these expected
values can be computed as follows. We assume
Ky < 0 for the sake of simplicity.

E[(X-p,)log(t+e*)]

= TEGXX—IOQ (1+\;K+ﬁoxx ) e dx
el T
_ostx

R K R

e (Zcit{) —Zkachit‘ijr
i=1 k=1 i=1

2

K 2 2 k
Zkakeo.Sk o5 +Kpy erfC My + Oy
V2o,

k=1

(12)

~0.56°

2

Wheretikzll[1+a£wD .erfc(x) can  be

20,

computed using Equation 11.
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+ log (1+e“x 2ox )

E[ log(1+e) |= _[ N

2
e™ dx

e Iog(l+e“”ﬁ°xx) .
_;( Te dx+

2o,
. (Hx +\26, x+log (1+e'“x 2o ))

7

V2o,

2
e™ dx

(13)

2
—0.5Hx

X 2 R K R
~05e {cx \/:+ Y Gty + > a, ZcitL}
T i-1 k=1 i1

K 252 + sz
+0.5) a, " erfe B 7 B0y

k=1 \EG X

. (log (L g e ))2

E[(Iog(1+ ex))z} = j e dx
: Jn
- (Iog(l+e“*’ﬁ‘f**))2
= J N e dx +
20,

o (ux +26 x+log (1+ gt oux ))2

k) =

2o,

eXdx (14)

2u, iakicitik -2¢? ikakicitik +
(px + 22& ]

2
—o5tx

~05e ( +6 )th'
Zbkzcitik
==

M 22 + ki 2
+0.52bke°'5k "X*"“xerfc(—” x GXJ

k=2 20,

2o +ko
05K ok ki erfe (u) can be computed as
V2o,
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ify, 20
= 1+ayk)
. (15)
2 2 70'5&2 R C.
2e0.5k oy +Kuy —e oy Z i i else
i-1 (l— ay, )
_ (uxtko? . .
where yy = (—ﬁcx ) Computation of logarithm

and exponent of a number using a computer takes

a long time compared to addition, multiplication

and division of numbers. Despite many additions,

multiplications and divisions are used, only three
i

2 -0.
exponents (e“X, e¥3% and e G§> are used for

computing p, and o2 in the method proosed in this
section. Therefore, the method proposed in this
section could demand less computation time
compared to the Gauss-Hermite Quadrature
method. We call the method proposed in this
section as the second proposed method.

The method proposed in this section has an
advantage and a disadvantage over the baseline or
the fast version of the baseline method. The
advantage is that, the percent relative error in o2
does not increase as o2 increases for the given
number of coefficients used to compute 62 and p,
using the method proposed in this section unlike
the baseline or the fast version of baseline method.

The disadvantage is that, there are subtractions in
computing 62 and p, using the method proposed
unlike the baseline method or fast version of the
baseline method. When we subtract one number
from the other that are close to each other, there
will be loss of significance [14]. When the value of
o2 is small, there will be subtraction of one
number from the other that are close to each other.
Therefore, the relative error will increase
substantially due to the loss of significance, when
the value of o2 is small. As a result, for small
values of o2, we may need to use more coefficients
to keep the relative percent error under a
prescribed value if we use the method described in
this section. However, a few abscissa will be
enough for computing 62 and p, for small values

265



Fast Computation of Parameters of the Random Variable that is Logarithm of Sum of Two Independent Log-normally

Distributed Random Variables

of o2 using the baseline method or fast version of
baseline method. Experimental results which
discuss these will be given in the next section.

5. EXPERIMENTAL RESULTS

Accuracy for both proposed methods and the
baseline method depends on the parameters
02 and . Therefore, we must decide on ranges
of o2 andp,. We must also decide on the
maximum acceptable errors for 62 and p,. In this
paper, the speeds of the proposed methods and
baseline method were compared for 0 < o2 <
1000, —100 < py < 0, and the maximum relative
error in o2 less than 1%.

Since we use numerical integration method to
compute the parameters, it is not possible to
compute the exact values of the parameters.
Consequently, we must decide on the error. The
percent relative error criterion is used in the

62-0?
o2

experiments. 100( ) gives the percent error

for variance where o2 is the true variance and 6 is
the computed variance. However, percent error
criterion is not appropriate for the mean since the

value of mean could be zero. 100 (%) could be a

good criterion for the mean where p is the true
mean and {i is the computed mean. Experimental
results showed that when the error criterion for
variance is satisfied, the error criterion for mean
will also be satisfied. Therefore, we consider to

satisfy only the error criterion for variance. After
setting these error criteria, we can compare the
computational complexity of the proposed
methods and the baseline method.

Since the number of additions, subtractions and
multiplications depend on the values of p,, and 62,
it is not easy to compare computational complexity
of the proposed methods and baseline method.
Therefore, we executed the baseline algorithm and
the proposed algorithms for estimating the
parameters for 1000 x 1000 times on a computer
with an intel i7 860 CPU without parallelizing the
algorithm, and compared the execution time. To do
this, the ranges of p, and o2 were divided into
1000 equally spaced values and for each value of
1, the algorithm were run for these 1000 different
o2 values.

We run an experiment to compare the execution
time of baseline method and fast version of
baseline method. Figure 1 shows the percent
decrease in execution time for the fast version of
baseline algorithm over the baseline algorithm for
the number of abscissa from 3 to 190. We set the
number of coefficients Kas 5 for approximating
10g(1+eX). There are 31.19% and 44.75%
decreases in execution time for 3 and 190
coefficients, respectively. The average (over all
coefficients)  decrease in  execution time
is 43.98%.

48}
46F -
44f
42
40r-
s ]
36}
34t}
32t
30

Percent decrease in execution time

0 20 40 60 80 100 120 140 160 180 200
The number of coefficients

Figure 1. Number of coefficients versus percent decrease in execution time
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We run an experiment to analyze the execution
time compared to the number of coefficients.
Figure 2 shows normalized execution time versus
number of abscissa. The normalized execution
time increases as the number of abscissa increase
as expected since the number of exponents which
demand most of execution time increases linearly
as the number of abscissa increases.

50— : :
T R T N S '
s e
o35 .
=30

N O T T O
0)25 ....... ....... ....... ........ P /

0 105 120 135 150
The number of coefficients

15 30 45 60 75 9
Figure 2. Number  of  coefficients  versus

normalized execution time for the fast
version of baseline method

We run an experiment to find the maximum value
of variance o2 that makes the maximum relative
percent errorin o2 less than one. The main effects
on the error are the values of 62, and p, for both
baseline method and fast version of baseline
method. We approximate log(1+eX) for the fast
version of baseline method. Since the
approximation error for log(1+eX) is very small
(less than 0.00567% for K=5) the percent relative
errors for both baseline and fast version of baseline
method are almost same for the given o2 value,
i, value, and number of abscissa. Figure 3 shows
number of coefficients versus variance (c2) that
makes the maximum relative percent error in
o, less than 1 when -100<p <0. Similarly, Figure
4 shows number of coefficients versus variance
(c2) that makes the maximum relative percent
error in o2 less than 1 when -10<p <0. From these
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figures, we can conclude that both o2 and p, have
significant effects on the number of abscissa that
keeps the relative percent error under one. The
ranges of p, are from -100 to O for Figure 3 and
from -10 to O for Figure 4. We can observe from
Figure. 3 and Figure 4 that less coefficients are
needed to keep the maximum relative percent error
in 62 under one when the range of p, is small. We
can also conclude from Figure 3 and Figure 4 that
the execution time increases as the variance (o2)
increases since more coefficients are needed to
keep the relative percent error in ¢ less than 1 for
large values of o2.

Table 2 shows the same information for Figure 3
and Figure 4 in terms of number of abscissas from
2 to 11 in addition to the normalized time for the
fast version of baseline method. The first column
shows the number of abscissa, second column
shows the maximum variance value that keeps the
percent error in o2 under 1 for —100 < p, < 0 for
the given number of abscissa. Similarly, the third
column shows the maximum variance value that
keeps the percent error in 62 under one for—10 <
Ky < 0 for the given number of abscissa. The last
column shows the normalized execution time for
the given number of abscissa.

165
150 :
135p
120F -
105F - :
90F--
75_
60 :
45F- ‘ :
30
15p 0

Variance

15 30 45 60 75 90 105 120 135 150
The number of coefficients

Figure 3. Variance o2 versus number of
coefficients for (—100 < p, < 0), and
relative error inc? less than 1% for the
fast version of baseline method.
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Figure 4. Variance o2 versus number of

coefficients for (—10 < p, < 0), and

relative error inc? less than 1% for the

fast version of baseline method

We wused 3, 4, and 5 coefficients for
approximations of log(1 + €¥), (log(1 + e¥))?,
and erfc(x), respectively for computation of o3
and p, using the second proposed method. These

coefficients are given in Table Ill. Finally, we run
an experiment to see the speed and accuracy of the
second proposed method. We measured the
normalized execution time as 1.873 for this
method. The good thing about the second proposed
method is that the normalized execution time does
not increase (1.873 seconds) as the variance o2
increases unlike the baseline and the fast version of
baseline methods. The experimental results
showed that the percent error in o2 is less than 1
when o2 > 0.325 and —100 < p, < 0. From
these results we realize that the fastest method
which keeps the percent error in o2 less than one is
the second proposed method for computing o2 and
i, for—100 < p, <0 and 02 > 0.325. The
fastest method is the fast version of baseline
method for 62 < 0.325 as seen from Table Il. The
fast version of baseline method that uses 2, 3, 4,
and 5 abscissa will be the fastest method for
62 < 0.008, 0.008 < 02 < 0.144, 0.144 <02 <
0.438, and 0.438 < oZ < 0.830, respectively for
—100 < py < 0 as seen from Table II.

Table 2. Number of coefficients versus variances (c2) and normalized execution time for fast version of
baseline method that keeps the relative percent error in 62 less than one

Functions Index

Coefficients

log(1+€e¥)

1

0.9971742202972404545136

-0.4437795339412708983673

0.1417111754378272969746

[log(1+e¥)]

0.9984854111176986179999

-0.9510743713797964460355

0.6370018861419275424396

- 0.204687600754972720551

erfc(x)

0.3179095096078142779206

0.3202728919600088541841

0.2377829824350161658231

0.2941637083449997192020

a|lrrjflw MM RPlO| PO ID]WOW]|DN

-0.1702177063239194154676

QD

0.56353
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Table 3. Coefficient values for approximation log(1 + €¥), [log(1 + €¥)]?, and erfc(x) which are used

for the experiments

i 2 H 2
# of coef-ficients (_\{%r(l)a;ci)fogx) 0) (Yf (r)lagcsx(;x%) Normalized time
2 0.008 0.008 1.0
3 0.144 0.144 1.231
4 0.438 0.438 1.531
5 0.830 0.832 1.723
6 1.282 1.291 2.023
7 1.773 1.819 2.208
8 2.292 2.659 2.554
9 2.835 3.395 2.777
10 3.397 4.199 3.385
11 4.574 5.096 3.331

6. CONCLUSIONS

Two new fast methods were proposed to compute
the mean and variance of the logarithm of a
random variable which is obtained by adding two
log-normally distributed random variables. It is
shown that the first proposed method which is
called the fast version of baseline method is the
fastest method for 62 < 0.325and —100 < p, <
0, and the second proposed method is the fastest
method for o2 >0.325and —-100<p, <0
which keeps the percent errors in 62 under one. In
addition to this, the execution time for the second
proposed method does not increase as the variance
o2 increases unlike the baseline and the fast
version of baseline method. The future work could
be exploring fast algorithms for computing the
covariance between the random variables which
are logarithm of random variables obtained by
adding two log-normally distributed random
variables.
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