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Abstract  

 
Today, with the advances in electricity-electronics, the usage areas of DC motors have increased 

considerably. DC motors have high starting torques and speed can be adjusted over a wide range. In the 

present experimental study, different weights connected to the motor shaft were rotated at different 

speeds, at variable distances, in the angle range of 0º-345º degrees. Thus, different torque values 

produced by the DC motor were observed. In some cases, the amount of torque produced at low rotational 

speeds may have non-linear values. This allows the use of artificial intelligence methods for accurate 

torque estimation. In the present study, different uses of Elman Backpropagation Neural Network 

(EBNN) and General Regression Neural Network (GRNN) are given for the estimation of the best torque 

values. Performance comparisons were made according to mean square error (MSE), regression 

coefficient (R
2
), root square error (RSE), and mean absolute error (MAE) values. 
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Bir Fırçalı Redüktörlü Dc Motorda Yapay Zeka Yöntemleriyle Tork Tahmini 

 

Öz 

 
Günümüzde elektrik-elektronikteki ilerlemelerle birlikte DC motorların kullanım alanları oldukça 

artmıştır. DC motorlar yüksek başlangıç torklarına sahiptir ve hızları geniş bir aralıkta ayarlanabilir. 

Mevcut deneysel çalışmada motor miline bağlı olan farklı ağırlıklar, farklı hızlarda, değişken 

uzaklıklarda, 0º-345º derece açı aralığında döndürülmüştür. Böylece DC motorun ürettiği farklı tork 

değerleri gözlemlenmiştir. Bazı durumlarda düşük dönme hızlarında üretilen tork miktarı doğrusal 

olmayan değerlere sahip olabilmektedir. Bu durum doğru tork tahmini için yapay zeka metotlarının 

kullanılmasına imkan sağlamaktadır. Mevcut çalışmada en iyi tork değerlerinin tahmini için Elman 

Backpropagation Neural Network (EBNN) ve General Regression Neural Network (GRNN) ağlarının 

farklı kullanımlarına yer verilmiştir. Performans kıyaslamaları ortalama karesel hata (MSE), regresyon 

katsayısı (R
2
), kök karesel hata (RSE), ve ortalama mutlak hata (MAE) değerlerine göre yapılmıştır. 

 

Anahtar Kelimeler: DC motor, Tork tahmini, Yapay zeka, EBNN, GRNN 

                                                 
*
Corresponding author (Sorumlu yazar): Serkan BELLER, sbeller@cu.edu.tr 



Torque Estimation with Artificial Intelligence Methods in a Brushed Geared Dc Motor 

886 Ç.Ü. Müh. Fak. Dergisi, 37(4), Aralık 2022 

1. INTRODUCTION 
 

With the development of technology, electronic 

and motorized systems have become a part of life. 

DC motor is one of the most used motor types. It 

provides the necessary energy conversion with the 

windings and permanent magnets in the DC motor, 

which converts the straight electric current into 

mechanical energy. When electric current is 

applied to the windings in the motor, motion is 

obtained with the effect of the magnetic force, 

which is formed in the opposite direction to the 

permanent magnets inside the motor. The direction 

of this current must be reversed to create a 

permanent magnetic field opposite the permanent 

magnet. This change is made by the brushes in 

brushed motors, and by electronic speed control 

circuits in brushless motors [1]. 

 

Basically, DC motors, which can be diversified as 

brushed, brushless, stepper, and servo DC motors, 

each have different characteristics. Brushed DC 

motors are the most basic type of DC motor. The 

use of these motors is easy. But they have worn 

parts called brushes or coals that must be replaced 

periodically [1]. Also, DC motors are used in 

many projects with or without a reducer. A geared 

brushed DC motor (Pololu, 12V25 mm, 2250 

RPM, 48 CPR Encoder [2]) was used in this study. 

The use of this DC motor is seen in Figure 1. The 

purpose of use of the reducer is to obtain higher 

torque by reducing the rotation speed of the motor. 

There are also gear systems that work in the 

opposite way, that is, reducing the torque and 

increasing the speed.  

 

When previous studies are examined, Nouri et. al. 

(2008) proposed adaptive control for a nonlinear 

dc motor drive using Recurrent Neural Networks 

(RNN). A model-following adaptive control 

structure is suggested for the speed control of a 

nonlinear motor drive system [3]. Yang et. al. 

(2009) improved a mechatronic positioning 

system. It has a manipulator arm, a DC-motor-

driven propeller assembly and a positioning 

control interface. Three different control methods 

are tried to regulate the displacement of the arm. 

These are, a fixed gain PID controller, a function-

based variable gain PID controller and a fuzzy gain 

mixing PID controller.  

 

 
Figure 1. Experiment Set: 1. Test weights, 2. 

Coupling, 3. DC motor, 4. Stopper, 5. 

Limiters, 6. Motor holder, 7. Encoder, 8. 

Bottom table 

 

Third method was more succesfull in suppressing 

the overshoot of the arm [4]. Reyes-Reyes et. al. 

(2010) presented a simple neuro-control law for 

controlling a geared DC motor. They formalized 

mathematically the stability of a geared DC motor. 

The formulation process was done using an 

artificial neural network and a neuro control law 

generated by Lyapunov-like analysis. The 

proposed approach was devoted to angular 

position regulation [5]. Premkumar et. al. (2014) 

suggested a novel controller for Brushless DC 

motor (BLDC). The proposed controller is based 

on ANFIS. The performance of the ANFIS is 

compared with PI controller, Fuzzy Tuned PID 

controller, and Fuzzy Variable Structure controller. 

Simulation was analyzed for varying load and 

varying set speed conditions. A more successful 

control strategy was developed for speed control of 

the BLDC motor with the ANFIS [6]. Ramadan et. 

al. (2014) presented an adaptive fuzzy logic speed 

controller for a DC motor, based on Field 

Programmable Gate Array (FPGA) hardware. 

Presented speed control was validated with good 

tracking results under distinct conditions [7]. Sabir 

et. al. (2016) considered designing of an optimum 

PID controller for DC motors of dual axis solar 

tracker system by using swarm intelligence 

techniques of Particle Swarm Optimization (PSO), 

Firefly Algorithm (FFA), and Cuckoo Search 

Algorithm (CSA) [8]. Rodr´ıguez-Molina et. al. 



Serkan BELLER 

Ç.Ü. Müh. Fak. Dergisi, 37(4), Aralık 2022 887 

(2017) suggested an adaptive control for the speed 

regulation of the DC motor using meta-heuristic 

algorithms. Several adaptive controllers based on 

the optimizers of Differential Evolution (DE), 

PSO, Bat Algorithm (BAT), Firefly Algorithm 

(FFA), and Wolf Search Algorithm (WSA) are 

suggested. According to the results, PSO based 

controller is one of the best options [9]. El-samahy 

et. al. (2018) developed brushless DC motor 

tracking control using self-tuning fuzzy PID 

control and Model Reference Adaptive Control 

(MRAC). The aim of the algorithm was to force 

the rotor speed to follow the desired reference 

speed with good accuracy at all times. According 

to simulation results MRAC had better 

performance than self-tuning fuzzy PID controller 

[10]. Gamazo-Real et. al. (2022) proposed ANN-

based position and speed sensorless estimation for 

brushless DC motors. According to the results 

overall position estimation improved many 

methods, and the speed estimation improved the 

traditional methods a little, but it was not very 

successful in advanced methods [11].  

 

According to the previous studies,  it was mostly 

focused on speed control in DC motors. 

Afterwards, position control is one of the subjects 

studied. On the other hand, torque control is not a 

much studied area in DC motors. Therefore, in this 

article, torque control is examined with artificial 

intelligence methods that have not been used 

before.  

 

2. MATERIAL AND METHOD 
 

When voltage is applied to a DC motor, current 

starts to flow through the rotor windings. Since 

these windings are in a magnetic field, each 

winding is subjected to a force. As the winding 

conductors are wrapped around the rotor, the rotor 

starts to rotate with the force it is exposed to. This 

angular force that causes rotation is called torque. 

In some cases, unexpected torque values can be 

seen at low speeds, depending on the DC motor 

characteristics. This variability can also occur from 

time to time at high speeds. The use of artificial 

intelligence methods is extremely beneficial in 

estimating unstable torque values at low speeds in 

DC motors working with high tooth backlash 

reducer. They also provide an estimate of the 

deformations and life cycles of the DC motor too. 

In the present study, machine learning methods 

Elman Back-propagation Neural Network (EBNN) 

and feed forward General Regression Neural 

Network (GRNN) were used. In both methods, 

they were trained with the supervised learning 

technique. Serial and parallel+serial uses of these 

networks are also included. 

 

2.1. Calculation of Torque 

 

The mass rotating around a center is shown in 

Figure 2. As seen in Equation 1 and Equation 2, 

multiplying the tangential acceleration (at) of the 

body P with the amount of mass (m) creates the 

torque force (Ft) in the same direction as the 

tangential velocity (Ѵ). Multiplying this torque 

force by the perpendicular distance (r) to the center 

(O) gives the numerical value of the torque (τ) 

(Equation 1, Equation 2).  

 

 
Figure 2. Rotating mass 

 

tF r   (1) 

 

( )tma r   (2) 

 

Torque is directly related to the mass of the 

rotating object (m), its tangential acceleration (at) 

and its distance from the center (r). Increasing one 

or all of these values also increases the amount of 

torque to be generated. Firstly in order to calculate 

the torque, the tangential velocity (Ѵ) of the 

rotating object must be calculated as in Equation 3.  
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Calculating the tangential velocity allows the 

angular velocity to be calculated as in Equation 4. 

 

r  , 
r


   (4) 

 

Angular acceleration (α) is calculated as in 

Equation 5 with the angular velocity equation, 

which is one of the rotational motion equations 

with constant angular acceleration. 

 

last first t     (5) 

 

Knowing the angular acceleration (α) enables the 

tangential acceleration (at) 
to be found as in 

Equation 6. 

 

ta

r
  , 

ta r  (6) 

 
Thus, by finding the tangential acceleration (at), 

the torque calculation is done by Equation 2. 

 

2.2. Elman Backpropagation Neural Network 

(EBNN) 

 

Elman (1990) neural network has a multi-layer 

artificial neural network structure. The only 

difference is that it contains the hidden layer 

outputs as a parallel input layer. This artificial 

neural network starts with the input layer that 

receives the input data. Then, it continues the 

neural network operation by returning the initial 

output values from the hidden layer and adding 

them to the additional input layer. This structure is 

seen in Figure 3. Since the return is delayed, the 

additional layer is also called the delayed input 

layer [12]. Since the weights (W) of the recycles 

are constant in this network structure, the Elman 

network can also be called a partially reversible 

network. The learning of the Elman Network, is 

generalized delta learning rule as in multilayer 

perceptrons [13]. According to the delta rule, the 

weight values of neuron connections should be 

constantly changed in order to reduce the 

difference between the expected result and the 

result obtained from the network. This rule was 

developed according to this logic. The generalized 

delta rule has two stages. In the first stage, forward 

calculation is made in the network. In the second 

step, backward calculation is done [13]. While 

training these network structures, ”nntool” neural 

network toolbox was used in Matlab/Simulink 

program. In all trials, the epoch number was 1000, 

goal was 0, and the max_fail value was 6. In this 

network structure, the toolbox determines the data 

split rates for training, testing and validation by 

itself. It cannot be interfered with. While 

specifying the data, it makes its selections 

scattered from the data pool. The graphical results 

of the training are given by the toolbox.  

 

 
Figure 3. View of EBNN in MATLAB 
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2.3. General Regression Neural Network 

(GRNN) 

 

GRNN was presented by Donald F. Specht in 

1991. In this network, the learning phase is fast 

and can be effective with a small number of data. 

As seen in Figure 4, GRNN structure is a 

feedforward network structure. There are four 

layers in this network. The number of input 

neurons depends on the number of problem inputs. 

The number of neurons in the pattern layer is equal 

to the number of samples. The number of neurons 

in the summation layer is one more than the 

number of outputs. The number of neurons in the 

output layer is equal to the number of data types 

requested in the trainings [14]. During training, the 

user chooses a spread value. For the most suitable 

performance, the spread value must be selected 

between 0-1 [15]. In this study, maximum nine 

different spread values (100 between 0.000001) 

were tried. Since the numbers 10 and 100 are out 

of the range of 0-1, they were chosen for 

experimental purposes. Values of 1 and less were 

chosen by decreasing them by ten digits. Thus, it is 

easier to understand the result has evolved in 

which direction. In addition, while determining the 

smallest spread value, it was checked whether the 

Training R
2
 result was 1, the Training RSE result 

was 0, and the Training MAE result was 0. 

Because, after reaching these values, the same 

results are obtained in every next 10-digit 

reduction of the spread value for the training and 

test results at the four digits after zero. So there is 

no need to lower the spread value further. For this 

reason, sometimes 7 different spread values and 

sometimes 9 different spread values were used in 

this study. 

 

 
Figure 4. View of GRNN in MATLAB 

 

2.4. System Design 
 

In this study, Pololu 12V brushed geared DC 

motor (2250 RPM, 48 CPR quadrature encoder) 

[2], Pololu motor controller card 24V23A [16], 

Humusoft MF634 DAQ card [17], power source 

(12V, 16.7A), and a computer (Windows 7, 64 bit, 

Intel Core i5-7500, 3.40 GHz, 16384 MB ram) 

were used. DC motor speed capacity was selected 

also 56.25% percent.  

 

According to the control block in Figure 5, three 

different data were used as input data. The first is 

the analog value for the DC motor velocity, the 

second is the test weight (g) value, and the third is 

the distance (mm) of the center of gravity of the 

test weight to the DC motor shaft. The output data 

is sweep duration (s) the 345
0
 degrees angle. As 

seen in Figure 6, studies were performed on four 

different neural network (NN) usage methods in 

the Matlab/Simulink environment. 

 

 
Figure 5. Control block 

 

 
Figure 6. NN usage methods: a) EBNN, b) GRNN, 

c) (EBNN+GRNN)+GRNN, d) EBNN+ 

GRNN 
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The neural network (NN) methods in Figure 6a 

and Figure 6b, namely EBNN and GRNN, consist 

of using neural networks alone. In the Figure 6c, 

EBNN and GRNN blocks were first used in 

parallel, then the output data of both sides were 

retrained in a second serial connected GRNN 

block. Also, in Figure 6d, EBNN and GRNN 

blocks were used serially. Success rates of control 

blocks are shown in the results section. 

 

2.5. Calculation of Error Values 

 

Performance measurements of training and test 

results were made with Mean Squared Error 

(MSE), Regression Coefficient (R
2
), Root Square 

Error (RSE), and Mean Absolute Error (MAE) 

values. They were calculated in Excel with the 

help of Equations 8, 9, 10, and 11, respectively. 

 

Mean Squared Error (MSE) [18], 

 

Aj = Actual values, Pj = Predicted values, n = Size 

of the data set, ej =Error (Equation 7) 

j j je A P    (7) 

 

2

1

1 n

j

t

MSE e
n 

   (8) 

 

Regression Coefficient (R
2
) [19],  

 

TSS = Total Sum of Squares, RSS = Residuals 

Sum of Squares 

   

2 TSS RSS
R

TSS


  (9) 

 

Root Square Error (RSE) [20], 

 
2

1

( )n
j j

t j

P A
RSE

A


   (10) 

 

Mean Absolute Error (MAE) [21], 

 

1

( )n
j j

t j

P A

A
MAE

n








 (11) 

 

MSE represents the average of the squared 

difference between the original and predicted 

values. It measures the variance of the residuals. 

R
2
 represents the proportion of the variance in the 

dependent variable which is explained by the 

linear regression model. It summarizes the 

explanatory power of the regression model and is 

computed from the sums of squares terms. RSE is 

the square root of Squared Error. It measures the 

standard deviation of residuals. MAE expresses the 

average of absolute errors between forecast and 

actual value. It measures the average of the 

residuals in the dataset. 

 

3. RESULTS 
 

In this study, machine learning methods EBNN 

and GRNN were used. During the training, 160 

lines of input data were used. While the DC motor 

speed value, the amount of test weight and the 

distance of the weight to the motor shaft were used 

as input data, the time to finish the 345
0
 degrees 

tour was requested as output data in the trainings. 

The relevant experimental set measurement 

parameters are shown in Figure 7. For the testing 

of artificial neural networks, 49 lines of data were 

used. These data were the values found between 

the first and last row data of the training data, 

which had never been introduced to the networks 

before. Thus, an attempt was made to measure the 

capabilities of neural networks. In addition, 

performance evaluations of parallel and serial 

usage of these networks were made. The success 

rates of the networks were evaluated with the 

results of MSE, R
2
, RSE, and MAE. With this 

study, it was seen how close the predictions 

produced by the networks to the true values. The 

fact that the results for R
2
 were close to 1 and the 

results for MSE, RSE and MAE were close to 0 

determined the success rates of the networks. 
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Figure 7. Experiment set measurement parameters 

 

During study, different analog signal values were 

prefered to drive the DC motor at different speeds. 

Analog signal values were used during training in 

the range of 1.6 to 3.0 with an increment of 0.2. 

Also, analog signal values were used during the test 

in the range of 1.7 to 2.9 with an increment of 0.2. 

The values of these signals as tangential velocity on 

the DC motor shaft are shown in Figure 8a and 

Figure 9a. The values of tangential velocity are 

constantly changing according to the analog signal 

values, test weight amounts, and the distance of the 

center of gravity of these weights to the DC motor 

shaft. These changes are seen in Figure 8c, Figure 

8d, Figure 9c, and Figure 9d, respectively. In Figure 

8b and Figure 9b, completion times of 345
0
 degrees 

tours for the training and test weights are shown. 

The fluctuations in the finishing times at low speeds 

can also be seen at high speeds from time to time. 

The best estimation method for these nonlinear 

cases can be achieved by using artificial intelligence 

methods. 
 

During the training, 20 different weights were 

connected to the experimental set at 20 different 

distances. Trainings were held at 8 different speeds. 

The weights used are, 17, 24, 34, 42, 53, 58, 65, 78, 

84, 88, 97, 104, 116, 124, 129, 139, 145, 152, 166, 

and 169 grammes, respectively. The distances used 

are, 42.5, 53.79, 59.75, 61.55, 61.85, 61.59, 60.78, 

58.92, 57.85, 57.02, 62.77, 61.67, 59.29, 66.01, 

65.53, 64.73, 64.19, 63.53, 61.86, and 61.47 

millimeters, respectively. Thus, 160 lines of training 

data emerged. During the test, 7 different weights 

were connected to the experimental set at 7 different 

distances. Tests were carried out at 7 different 

speeds. The weights used are, 20.5, 48, 70, 92, 119, 

143, and 162 grammes, respectively. The distances 

used are, 49.33, 64.24, 67, 64.58, 62.86, 62.06, and 

58.4 millimeters, respectively. Thus, 49 lines of test 

data were obtained. 
 

3.1. EBNN Experiment Results 
 

As seen in Table 1, four different functions were 

used as training function during the training of 32 

different networks. These are Trainlm, Trainbfg, 

Trainoss, Trainscg. Training was performed with 5 

different neuron numbers (5, 10, 15, 20) and two 

different transfer functions (Log, Tan) in the hidden 

layer. In the output layer, the Purelin transfer 

function was preferred. According to Table 2, the 

best training results were obtained with the first-line 

neural network structure. The training function is 

trainlm, the hidden layer transfer function is logsig, 

and the number of neuron is 5. The output layer 

transfer function is purelin and the number of 

neuron is 1. In Figure 10, the training performance 

graphs of the training results are shown. 
 

3.2. GRNN Experiment Results 
 

In this study, seven different spread values (100, 10, 

1, 0.1, 0.01, 0.001, 0.0001) were used tried to find 

the best performance. According to Table 3, it is 

seen that the training and test results do not change 

in values where the spread value is 0.01 or less for 

the four digits after zero. The 'Train R
2
' result is 1, 

the 'Train RSE' result is 0, and the 'Train MAE' 

result is 0 at the fifth, sixth, and seventh spread 

values. So, the best performance was accepted by 

spread value of 0.01. 
 

3.3. (EBNN+GRNN)+GRNN Experiment Results 
 

In this control technique, EBNN and GRNN blocks 

were firstly used in parallel, then the output data of 

both sides were retrained in a second serial 

connected GRNN block. According to Table 4, 

seven different spread values (100, 10, 1, 0.1, 0.01, 

0.001, 0.0001) were used tried to find the best 

performance. 

 

Because; the 'Train R
2
' result is 1, the 'Train RSE' 

result is 0, and the 'Train MAE' result is 0 at the 

seventh spread value. At lower spread values, 

training and test results will not change for the four 

digits after zero. The best performance was 

provided by spread value of 0.01. 
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(a)       (b) 

 
(c)       (d)  

Figure 8. Training data; a) Analog signal-velocity graph b) Weight-duration graph c)Weight-velocity 

graph d) Distance-velocity graph 

 

 
(a)       (b) 
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(c)       (d)    

Figure 9.  Test data; a) Analog signal-velocity graph b) Weight-duration graph c)Weight-velocity graph 

d) Distance-velocity graph 

 

3.4. EBNN+GRNN Experiment Results 

 

In this method, EBNN and GRNN blocks were 

used serial connected. According to Table 5, nine 

different spread values (100, 10, 1, 0.1, 0.01, 

0.001, 0.0001, 0.00001, 0.000001) were used tried 

to find the best performance. Because; the 'Train 

R
2
' result is 1, the 'Train RSE' result is 0, and the 

'Train MAE' result is 0 at the nineth spread value. 

At lower spread values, training and test results 

will not change for the four digits after zero. The 

best performance was provided by spread value of 

0.01. 

 

Table 1. EBNN training features 

 Network Type 
Training 

Function 

Layer 1 

Tran. F. 

Layer 1 

Neuron 

Layer 2 

Tran. F. 

Layer 2 

Neuron 

1 Elman Back. TRAINLM LOGSIG 5 PURELIN 1 

2 Elman Back. TRAINLM LOGSIG 10 PURELIN 1 

3 Elman Back. TRAINLM LOGSIG 15 PURELIN 1 

4 Elman Back. TRAINLM LOGSIG 20 PURELIN 1 

5 Elman Back. TRAINLM TANSIG 5 PURELIN 1 

6 Elman Back. TRAINLM TANSIG 10 PURELIN 1 

7 Elman Back. TRAINLM TANSIG 15 PURELIN 1 

8 Elman Back. TRAINLM TANSIG 20 PURELIN 1 

9 Elman Back. TRAINBFG LOGSIG 5 PURELIN 1 

10 Elman Back. TRAINBFG LOGSIG 10 PURELIN 1 

11 Elman Back. TRAINBFG LOGSIG 15 PURELIN 1 

12 Elman Back. TRAINBFG LOGSIG 20 PURELIN 1 

13 Elman Back. TRAINBFG TANSIG 5 PURELIN 1 

14 Elman Back. TRAINBFG TANSIG 10 PURELIN 1 

15 Elman Back. TRAINBFG TANSIG 15 PURELIN 1 

16 Elman Back. TRAINBFG TANSIG 20 PURELIN 1 

17 Elman Back. TRAINOSS LOGSIG 5 PURELIN 1 

18 Elman Back. TRAINOSS LOGSIG 10 PURELIN 1 
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19 Elman Back. TRAINOSS LOGSIG 15 PURELIN 1 

20 Elman Back. TRAINOSS LOGSIG 20 PURELIN 1 

21 Elman Back. TRAINOSS TANSIG 5 PURELIN 1 

22 Elman Back. TRAINOSS TANSIG 10 PURELIN 1 

23 Elman Back. TRAINOSS TANSIG 15 PURELIN 1 

24 Elman Back. TRAINOSS TANSIG 20 PURELIN 1 

25 Elman Back. TRAINSCG LOGSIG 5 PURELIN 1 

26 Elman Back. TRAINSCG LOGSIG 10 PURELIN 1 

27 Elman Back. TRAINSCG LOGSIG 15 PURELIN 1 

28 Elman Back. TRAINSCG LOGSIG 20 PURELIN 1 

29 Elman Back. TRAINSCG TANSIG 5 PURELIN 1 

30 Elman Back. TRAINSCG TANSIG 10 PURELIN 1 

31 Elman Back. TRAINSCG TANSIG 15 PURELIN 1 

32 Elman Back. TRAINSCG TANSIG 20 PURELIN 1 

 

3.5. Comparison of Experiment Results 

 

In the current study, two different artificial 

intelligence methods were used in four different 

ways to achieve the best results. When looked at 

Table 6, the serial-connected EBNN+GRNN 

method obtained the best results.  

 

Table 2. EBNN training performances 

 
MSE Train R

2 
Test R

2 Train 

RSE 
Test RSE 

Train 

MAE 

Test 

MAE 

1 5.0160E-06 0.9967 0.9975 0.1319 0.1249 0.0115 0.0241 

2 2.6103E-05 0.9970 0.9949 0.1240 0.1839 0.0103 0.0371 

3 2.6134E-05 0.9960 0.9938 0.1423 0.1839 0.0111 0.0354 

4 6.7697E-06 0.9970 0.9913 0.1238 0.2156 0.0099 0.0387 

5 7.2691E-05 0.9965 0.9972 0.1391 0.1273 0.0120 0.0259 

6 3.6900E-05 0.9962 0.9961 0.1612 0.1341 0.0160 0.0251 

7 2.0247E-05 0.9965 0.9958 0.1349 0.1403 0.0114 0.0239 

8 1.7891E-05 0.9955 0.9950 0.1596 0.1635 0.0121 0.0309 

9 9.0484E-05 0.9928 0.9958 0.2178 0.1581 0.0226 0.0294 

10 8.8255E-05 0.9924 0.9928 0.2286 0.1681 0.0258 0.0301 

11 3.2254E-05 0.9958 0.9967 0.1659 0.1527 0.0163 0.0302 

12 4.5193E-05 0.9955 0.9968 0.1659 0.1623 0.0159 0.0322 

13 4.8156E-05 0.9944 0.9952 0.2180 0.1640 0.0214 0.0319 

14 6.7363E-05 0.9955 0.9966 0.1784 0.1401 0.0180 0.0287 

15 4.5285E-05 0.9951 0.9948 0.1734 0.1587 0.0172 0.0304 

16 6.8692E-05 0.9940 0.9931 0.1974 0.1632 0.0198 0.0324 

17 8.0814E-05 0.9919 0.9936 0.2313 0.1737 0.0246 0.0296 

18 7.8762E-05 0.9931 0.9940 0.2200 0.2199 0.0228 0.0441 

19 5.0604E-05 0.9919 0.9939 0.2281 0.1966 0.0233 0.0364 

20 5.8189E-05 0.9945 0.9958 0.1806 0.1588 0.0178 0.0286 

21 5.9081E-05 0.9940 0.9941 0.1987 0.2072 0.0211 0.0403 

22 5.0640E-05 0.9939 0.9953 0.2014 0.1964 0.0211 0.0427 

23 2.6075E-05 0.9944 0.9946 0.1840 0.1887 0.0178 0.0354 

24 5.4275E-05 0.9936 0.9944 0.1988 0.1816 0.0203 0.0339 



Serkan BELLER 

Ç.Ü. Müh. Fak. Dergisi, 37(4), Aralık 2022 895 

25 5.1542E-05 0.9955 0.9958 0.1749 0.1759 0.0178 0.0365 

26 4.9899E-05 0.9951 0.9938 0.1720 0.1696 0.0171 0.0319 

27 3.1127E-05 0.9958 0.9956 0.1606 0.1366 0.0158 0.0266 

28 4.7405E-05 0.9956 0.9974 0.1605 0.1438 0.0146 0.0278 

29 1.4031E-05 0.9962 0.9966 0.1531 0.1473 0.0142 0.0302 

30 1.4414E-05 0.9960 0.9963 0.1521 0.1508 0.0143 0.0299 

31 2.1622E-05 0.9957 0.9952 0.1596 0.1608 0.0148 0.0294 

32 3.8453E-05 0.9951 0.9963 0.1813 0.1272 0.0171 0.0230 

 

 
Figure 10. EBNN training performance graphs 

 

Table 3. Performances of spread values for GRNN 

Spread 100 10 1 0.1 0.01 0.001 0.0001 

Train. R
2 

0.6351 0.6533 0.7917 0.9997 1 1 1 

Test. R
2
 0.6793 0.7138 0.8157 0.9577 0.9577 0.9577 0.9577 

Train. RSE 2.6291 1.4714 1.1236 0.0412 0 0 0 

Test. RSE 1.3718 0.7173 0.5906 0.3285 0.3285 0.3285 0.3285 

Train. MAE 0.3085 0.1642 0.1196 0.0030 0 0 0 

Test. MAE 0.2939 0.1493 0.1286 0.0693 0.0693 0.0693 0.0693 

 

Table 4. Performances of spread values for (EBNN+GRNN)+GRNN 

Spread 100 10 1 0.1 0.01 0.001 0.0001 

Train. R
2 

0.9991 0.9991 0.9989 0.9948 0.9997 0.9999 1 

Test. R
2
 0.9860 0.9860 0.9837 0.9763 0.9783 0.9758 0.9760 

Train. RSE 3.1884 3.1867 3.0299 0.5811 0.0408 0.0019 0 

Test. RSE 1.7016 1.7007 1.6163 0.3688 0.2325 0.2448 0.2430 

Train. MAE 0.3807 0.3805 0.3616 0.0681 0.0045 0.0001 0 

Test. MAE 0.3630 0.3628 0.3446 0.0747 0.0445 0.0483 0.0474 
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Table 5. Performances of spread values for EBNN+GRNN 

Spread 100
 

10 1 1*10
-1

 1*10
-2

 1*10
-3

 1*10
-4

 1*10
-5

 1*10
-6

 

Trai. R
2 

0.9967 0.9967 0.9966 0.9872 0.9975 0.9996 0.9999 0.9999 1 

Test. R
2
 0.9975 0.9975 0.9972 0.9910 0.9977 0.9963 0.9956 0.9955 0.9955 

Trai. RSE 3.1884 3.1875 3.1070 0.9738 0.1168 0.0528 0.0231 0.0011 0 

Test. RSE 1.7016 1.7012 1.6568 0.5233 0.1148 0.1289 0.1339 0.1338 0.1338 

Trai. MAE 0.3807 0.3806 0.3709 0.1163 0.0105 0.0042 0.0008 2.49E-05 0 

Test. MAE 0.3630 0.3629 0.3535 0.1084 0.0238 0.0255 0.0265 0.0265 0.0265 

 

In Figure 11, torque values of 160 different 

positions for training and 49 different positions for 

testing are shown. Since eight different speeds for 

training and seven different speeds for testing are 

increased gradually, the torque values in the graphs 

are seen in increasing steps. Along with tangential 

velocity, the amounts of weight and the increases 

in the distance played a role in these changes too. 

 

Table 6. Performance comparisons of the networks 
 

Network type 

Cor. predic. rate 

of train data for 

%5 error 

Cor. predic. 

rate of test 

data for %5 

error 

Train 

R2 

Test 

R2 

Train 

RSE 

Test 

RSE 

Train 

MAE 

Test 

MAE 

1 EBNN+GRNN % 98.75 % 93.87 0.9975 0.9977 0.1168 0.1148 0.0105 0.0238 

2 EBNN % 98.12 % 93.87 0.9967 0.9975 0.1319 0.1249 0.0115 0.0241 

3 (EBNN+GRNN)+GRNN % 100 % 69.38 0.9997 0.9783 0.0408 0.2325 0.0045 0.0445 

4 GRNN % 100 % 40.81 1.0000 0.9577 0.0000 0.3285 0.0000 0.0693 

 

According to Table 6, in the EBNN+GRNN 

method, the correct prediction rates for the 5% 

error value are 98.75% in the training data (561-

1175 RPM) and 93.87% in the test data (616-1130 

RPM). Most of the errors occurred at low motor 

speeds. During the training phase, 2 faults 

occurred at 1.6 motor speed (561 RPM), in the 

testing phase, 2 of the 3 faults occurred at 1.9 

motor speed (701 RPM), and 1 at 2.7 motor speed 

(1046 RPM). The unstable torque values at low 

speeds in DC motors working with a gearbox with 

high tooth spacing force artificial intelligence 

methods. A similar results are seen in the study of 

Gamazo-Real et. al. [11]. The relative speed error 

is 5.5% when the motor speed is 325 RPM. At 725 

RPM, it is 4.5%. Brushless DC motor relative 

speed error is 5% over the full motor speed range 

(125–1500 RPM) in [11].  

 

4. DISCUSSION AND CONCLUSION  
 

In DC motors, torque is very important in terms of 

speed control, position control, amount of load to 

be lifted, torque, and traction power. It has a direct 

relationship with the work to be done. In this 

study, artificial intelligence methods that will 

predict the most accurate torque values are 

presented. The success of these models was 

determined according to MSE, R
2
, RSE, and MAE 

results. For the training of the models, 160 lines of 

data consisting of different speeds, weights and 

distances were used. For the test, a 49-row dataset, 

which was not used in the trainings and consisted 

of different speeds, weights and distances, was 

preferred. From machine learning methods 

Backpropagation EBNN network and feed-forward 

GRNN network were used for the prediction with 

different arrangements. In the EBNN+GRNN 

serial connected model, train R
2
, test R

2
, train 

RSE, test RSE, train MAE, and test MAE values 

were calculated as 0.9975, 0.9977, 0.1168, 0.1148, 

0.0105, and 0.0238, respectively. This model is 

more successful than other models. The use of the 

serial-connected model had previously given 

successful results in the use of feed-forward 

NN+GRNN [22] too. In this study, serially 
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connected EBNN+GRNN usage provided similar 

success. 

 

In future studies, it will be tried to increase the 

prediction performance of different models with 

different artificial neural network methods by 

increasing the data set. Thus, in robotic studies, 

more stable movements would be achieved despite 

unforeseen conditions with accurate torque 

estimations.  

 

 a) 

 b) 

Figure 11. a) Torque graph of real-time and EBNN+GRNN training data b) Torque graph of real-time 

and EBNN+GRNN test data 
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