Fast Computation of Parameters of the Random Variable that is Logarithm of Sum of Two Independent Log-normally Distributed Random Variables

Zekeriya TÜFEKÇi ${ }^{* 1}$ ORCID 0000-0001-7835-2741
Gökay DİŞEN ${ }^{2}$ ORCID 0000-0002-8680-0636
${ }^{1}$ Çukurova University, Faculty of Engineering, Department of Computer Engineering, Adana
${ }^{2}$ Adana Alparslan Türkess Science and Technology University, Department of Electrical and Electronic Engineering, Adana

Geliş tarihi: 11.02.2022
Kabul tarihi: 21.03.2022
Atıf şekli/ How to cite: TÜFEKÇİ, Z., DİŞKEN, G., (2022). Fast Computation of Parameters of the Random Variable that is Logarithm of Sum of Two Independent Log-normally Distributed Random Variables. Çukurova Üniversitesi, Mühendislik Fakültesi Dergisi, 37(1), 261-270.

Abstract

In this paper, two fast methods are proposed for computation of mean and variance of a random variable which is logarithm of two log-normally distributed random variables. It is shown that mean and variance can be computed using only one dimensional numerical integration method. The speed of the proposed algorithms is compared with the baseline algorithm. Simulation results showed that the first proposed method decreases the execution time by an average of 43.98%. Simulation results also showed that the second proposed method is faster than the first proposed method for the variances greater than 0.325 .

Keywords: Sum of log-normally distributed random variables, Parallel model combination, Numerical integration, Robustness.

İki Bağımsız Log-Normal Dağıtılmış Rastgele Değişkenin Toplamının Logaritması Olan Rastgele Değişkenin Parametrelerinin Hızlı Hesaplanması

Öz

Bu çalışmada, iki log-normal dağılımlı rasgele değişkenin logaritması olan rasgele değişkenin ortalama ve varyansını hesaplamak için iki hızlı metot sunulmuştur. Ortalama ve varyansın sadece bir boyutlu nümerik integral metodu ile hesaplanabileceği gösterilmiştir. Önerilen algoritmanın hızı temel algoritmanın hızı ile karşılaştırılmıştır. Benzetim sonuçları önerilen ilk yöntemin çalışma zamanını ortalama $\% 43,98$ azalttığını göstermiştir. Benzetim sonuçları ayrıca önerilen ikinci metodun 0,325 ’ten büyük varyanslar için birinci yöntemden daha hızlı olduğunu göstermiştir..

Anahtar Kelimeler: Log-normal dağılımlı rasgele değişkenlerin toplamı, Paralel model kombinasyonu, Nümerik integral, Gürbüzlük

[^0]
1. INTRODUCTION

The parameters of a random variable that represents the \log of sum of two log-normally distributed random variables, are required to be estimated for some signal processing applications. These parameters can be used for estimating the distribution of sum of log normally distributed random variables [1,2], and for the Parallel Model Combination (PMC) [3-6] which is our main case for developing the methods proposed in this paper.

The sum of log-normal random variables has applications in many fields such as telecommunication [1,7,8], financial modelling [9], physics [10], and so forth. Many techniques have been developed for estimating distribution of sum of log-normally distributed random variables [1,2, 7,8]. Schwartz-Yeh [1] method and the method proposed in [2] need to use parameters of \log of sum of log-normally distributed random variables. Therefore, methods proposed in this paper for estimating the parameters of the \log of sum of two log-normally distributed random variables can be used for estimating the distribution of sum of lognormally distributed random variables [1,2].

The PMC is a technique for estimating the noisy speech models using the noise and clean speech models. Noise severely degrades the performance of speech recognition systems [11]. The PMC is one of the most effective techniques used for speech recognition under noisy conditions. In PMC, the noisy speech model parameters are estimated using the clean speech models and noise model. Estimating the noisy speech model parameters is almost the same as estimating the parameters of a random variable which is obtained by taking the logarithm of the sum of two lognormally distributed random variables. Therefore, the method proposed in this paper can be used as a part of numerical integration based PMC.

There are three different PMC techniques which are log-normal approximation [3], data-driven approach [4,5] and numerical integration [6]. The
numerical integration technique estimates the noisy speech model parameters with the highest accuracy among the other PMC methods but demands the highest computation time. In this paper, we propose two new fast methods which can be used in PMC, for estimating the parameters (mean and variance) of logarithm of random variable which is obtained by adding two lognormally distributed random variables. Numerical integration-based PMC method is explained in [6], however, the accuracy of the estimated parameters and computational complexity of the numerical integration method are not discussed in this paper. In this paper, we discuss the accuracy and computational complexity of the proposed numerical integration methods.

2. ADDING TWO LOG-NORMALLY DISTRIBUTED RANDOM VARIABLES

Let $\boldsymbol{S}_{\boldsymbol{i}}$ and $\boldsymbol{N}_{\boldsymbol{i}}$ be two independent Gaussian random variables with means $\boldsymbol{\mu}_{\boldsymbol{s}_{\boldsymbol{i}}}, \boldsymbol{\mu}_{\boldsymbol{n}_{\boldsymbol{i}}}$ and variances $\boldsymbol{\sigma}_{\boldsymbol{s}_{\boldsymbol{i}}}$, $\boldsymbol{\sigma}_{n_{i}}$, respectively. We define a new random variable $\boldsymbol{O}_{\boldsymbol{i}}$ such that
$O_{i}=\log \left(e^{S_{i}}+e^{N_{i}}\right)=S_{i}+\log \left(1+e^{X_{i}}\right)$
where $\mathrm{X}_{\mathrm{i}}=\mathrm{N}_{\mathrm{i}}-\mathrm{S}_{\mathrm{i}} . \quad X_{i}$ is also a Gaussian random variable with mean $\mu_{x_{\mathrm{i}}}=\mu_{\mathrm{n}_{\mathrm{i}}}-\mu_{\mathrm{s}_{\mathrm{i}}}$ and variance $\sigma_{\mathrm{X}_{\mathrm{i}}}^{2}=\sigma_{\mathrm{n}_{\mathrm{i}}}^{2}+\sigma_{\mathrm{s}_{\mathrm{i}}}^{2}$ since S_{i} and N_{i} are Gaussian random variables. We want to compute the mean and variance of the random variable O_{i}. There is no closed form of solution for mean and variance. Two dimensional numerical integration can be used to compute mean and variance. However, dimension of integration can be reduced to one as follows. Let us drop the index i for the sake of simplicity. The mean is
$\mu_{o}=\mu_{\mathrm{s}}+\mathrm{E}\left[\log \left(1+\mathrm{e}^{\mathrm{x}}\right)\right]$
The variance is;

$$
\begin{aligned}
\sigma_{\mathrm{o}}^{2}= & \mathrm{E}\left[\left(\mathrm{~S}+\log \left(1+\mathrm{e}^{\mathrm{x}}\right)\right)^{2}\right]-\mu_{\mathrm{o}}^{2} \\
= & \sigma_{\mathrm{s}}^{2}+\mathrm{E}\left[2\left(\mathrm{~S}-\mu_{\mathrm{s}}\right) \log \left(1+\mathrm{e}^{\mathrm{x}}\right)+\left(\log \left(1+\mathrm{e}^{\mathrm{x}}\right)\right)^{2}\right] \\
& -\left(\mathrm{E}\left[\log \left(1+\mathrm{e}^{\mathrm{x}}\right)\right]\right)^{2} \\
= & \sigma_{\mathrm{s}}^{2}+\mathrm{E}\left[2 \rho^{2}\left(\mu_{\mathrm{x}}-\mathrm{X}\right) \log \left(1+\mathrm{e}^{\mathrm{x}}\right)+\left(\log \left(1+\mathrm{e}^{\mathrm{x}}\right)\right)^{2}\right] \\
& -\left(\mathrm{E}\left[\log \left(1+\mathrm{e}^{\mathrm{x}}\right)\right]\right)^{2}
\end{aligned}
$$

$$
\text { where } \rho=\frac{E\left[\left(X-\mu_{x}\right)\left(S-\mu_{s}\right)\right]}{\sigma_{x} \sigma_{s}}=\frac{-\sigma_{s}}{\sigma_{x}}
$$

3. COMPUTING THE MEAN AND VARIANCE USING GAUSSHERMITE QUADRATURE

If the function $f(x)$ is well approximated by a polynomial of order $2 \mathrm{~N}-1$, then Gauss-Hermite quadrature is a good estimate of the integral $\int_{-\infty}^{+\infty} f(x) e^{-x^{2}}$.

$$
\begin{equation*}
\int_{-\infty}^{+\infty} f(x) e^{-x^{2}} \approx \sum_{i=1}^{N} w_{i} f\left(x_{i}\right) \tag{4}
\end{equation*}
$$

In this case where x_{i} and w_{i} are Gauss-Hermite abscissa and weights, respectively [12] and N is the number of abscissa and weights used. It is known that if x_{i} is an abscissa then $-\boldsymbol{x}_{\boldsymbol{i}}$ is also an abscissa [12]. This property of abscissa reduces the number of exponents by almost a factor of two since $e^{x_{i}}=1 / e^{-x_{i}}$. The accuracies of μ_{o} and σ_{o}^{2} which are computed using Equation 4 depend on how well the function $f(x)$ is approximated by a polynomial of order $2 N-1$. In order to compute μ_{o} and σ_{o}^{2} using Equation 4, We need to compute the following expectations:
$E\left[\log \left(1+e^{x}\right)\right]=\int_{-\infty}^{+\infty} \frac{\log \left(1+e^{\mu_{x}+\sqrt{2} \sigma_{x} x}\right)}{\sqrt{\pi}} e^{-x^{2}} d x$
(5) $\left|\frac{f(x)-\hat{f}(x)}{f(x)}\right|$
$\log \left(1+\mathrm{e}^{\mathrm{x}}\right)$ can be approximated as

Fast Computation of Parameters of the Random Variable that is Logarithm of Sum of Two Independent Log-normally Distributed Random Variables

$$
\begin{equation*}
\log \left(1+e^{x}\right) \approx \sum_{i=1}^{K} a_{i} e^{i x}=\sum_{i=1}^{K} a_{i}\left(e^{x}\right)^{i} \text { for } x \leq 0 \tag{9}
\end{equation*}
$$

where a_{i} 's are chosen to minimize the error for the given criteria, and K is the number of coefficients. One exponent, one logarithm and one addition are needed to compute $\log \left(1+\mathrm{e}^{\mathrm{x}}\right)$. However, the number of arithmetic operations can be replaced by one exponent, ($\mathrm{K}-1$) additions, an $2(\mathrm{~K}-1) \mathrm{d}$ multiplications using equation (9). For $x>0$, $\log \left(1+\mathrm{e}^{\mathrm{x}}\right)$ can be computed using the equality $\log \left(1+\mathrm{e}^{\mathrm{x}}\right)=\mathrm{x}+\log \left(1+\mathrm{e}^{-\mathrm{x}}\right)$. Similarly, $\quad\left[\log \left(1+\mathrm{e}^{\mathrm{x}}\right)\right]^{2}$ can be approximated as

$$
\begin{equation*}
\left[\log \left(1+\mathrm{e}^{\mathrm{x}}\right)\right]^{2} \approx \sum_{\mathrm{i}=2}^{\mathrm{M}} \mathrm{~b}_{\mathrm{i}} \mathrm{e}^{\mathrm{ix}} \quad \text { for } \mathrm{x} \leq 0 \tag{10}
\end{equation*}
$$

where b_{i} 's are chosen to minimize the error for the given criteria, $(M-1)$ is the number of coefficients. $\operatorname{erfc}(\mathrm{x})$ can be approximated using
$\operatorname{erfc}(x) \approx \mathrm{e}^{-\mathrm{x}^{2}} \sum_{\mathrm{i}=1}^{\mathrm{R}} \mathrm{c}_{\mathrm{i}} \mathrm{t}^{\mathrm{i}} \quad$ for $\mathrm{x} \geq 0$
where $t=\frac{1}{1+a x}$ and R is the number of coefficients. a, and c_{i} 's are chosen to minimize the error between $\operatorname{erfc}(x)$ and the approximation of $\operatorname{erfc}(x)$ for the given criteria. $\operatorname{erfc}(x)$ can be computed using $\operatorname{erfc}(x)=2-\operatorname{erfc}(-x)$ for $x \leq 0$. For all the functions that were approximated, maximum relative error is minimized, and Parks-McClellan [13] algorithm is used to find the approximations of these functions. Table I shows the maximum relative approximation errors in percentage for 3 , 4,5 and 6 coefficients for the functions $\log \left(1+\mathrm{e}^{\mathrm{x}}\right)$, $\left(\log \left(1+\mathrm{e}^{\mathrm{x}}\right)\right)^{2}$, and $\operatorname{erfc}(\mathrm{x})$.

Table 1. Maximum relative approximation errors in percent

\#of coefficients	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
$\log \left(1+\mathrm{e}^{\mathrm{x}}\right)$	0.283	0.039	0.006	0.0008
$\left[\log \left(1+\mathrm{e}^{\mathrm{x}}\right)\right]^{2}$	0.948	0.152	0.024	0.0039
$\operatorname{erfc}(\mathrm{x})$	0.237	0.053	0.009	0.0017

4.1. Fast Computation of Mean and Variance Using Gauss-Hermite Quadrature

The baseline method requires computations of N logarithms, and ($\lfloor\mathrm{N} / 2\rfloor+1$) exponents for computing μ_{o} and σ_{o}^{2} where N is the number of abscissa. These $(\lfloor\mathrm{N} / 2\rfloor+1)$ exponents, and N logarithms can be replaced by only $(\lfloor\mathrm{N} / 2\rfloor+1)$ exponents by approximating the $\log \left(1+\mathrm{e}^{\mu_{x}}+\sqrt{2} \sigma_{x} x\right)$ using Equation 9. This approximation significantly reduces computational complexity. We call this algorithm as fast version of Gauss-Hermite quadrature (fast version of baseline) method for computing μ_{o} and σ_{o}^{2} in this paper.

4.2. Fast Computation of Mean and Variance by Approximating the Functions

Gaussian-Quadrature method approximates the integral. However, in this section, we propose to approximate the functions for fast computation of mean and variance. In order to compute μ_{o} and σ_{0}^{2}, we need to compute expected values of $\left[\left(\mathrm{X}-\mu_{\mathrm{x}}\right) \log \left(1+\mathrm{e}^{\mathrm{X}}\right)\right], \log \left(1+\mathrm{e}^{\mathrm{x}}\right)$, and $(\log (1+$ $\left.\left.\mathrm{e}^{\mathrm{x}}\right)\right)^{2}$. Approximate values of these expected values can be computed as follows. We assume $\mu_{\mathrm{x}} \leq 0$ for the sake of simplicity.
$E\left[\left(X-\mu_{x}\right) \log \left(1+e^{x}\right)\right]$
$=\int_{-\infty}^{+\infty} \sqrt{\frac{2}{\pi}} \sigma_{x} x \frac{\log \left(1+\mathrm{e}^{\mu_{x}+\sqrt{2} \sigma_{x}}\right)}{\sqrt{\pi}} \mathrm{e}^{-\mathrm{x}^{2}} \mathrm{dx}$
$\approx 0.5 \sigma_{x}^{2}\left[\begin{array}{l}e^{-0.5 \frac{\mu_{x}^{2}}{\sigma_{x}^{2}}}\left(\sum_{i=1}^{R} c_{i} t_{0}^{i}-\sum_{k=1}^{K} k a_{k} \sum_{i=1}^{R} c_{i} t_{k}^{i}\right)+ \\ \sum_{k=1}^{K} k a_{k} e^{0.5 k^{2} \sigma_{x}^{2}+k \mu_{x}} \operatorname{erfc}\left(\frac{\mu_{x}+k \sigma_{x}^{2}}{\sqrt{2} \sigma_{x}}\right)\end{array}\right]$
where $t_{k}^{i}=1 /\left(1+a\left(\frac{-\mu_{x}+k \sigma_{x}^{2}}{\sqrt{2} \sigma_{x}}\right)\right)^{i} . \operatorname{erfc}(x)$ can be computed using Equation 11.

$$
\mathrm{e}^{0.5 \mathrm{k}^{2} \sigma_{\mathrm{x}}^{2}+k \mu_{\mathrm{x}}} \operatorname{erfc}\left(\frac{\mu_{\mathrm{x}}+k \sigma_{\mathrm{x}}^{2}}{\sqrt{2} \sigma_{\mathrm{x}}}\right) \text { can be computed as }
$$

$$
\begin{align*}
& E\left[\log \left(1+e^{x}\right)\right]=\int_{-\infty}^{+\infty} \frac{\log \left(1+e^{\mu_{x}+\sqrt{2} \sigma_{x} x}\right)}{\sqrt{\pi}} e^{-x^{2}} d x \\
& =\int_{\frac{\mu_{x}}{\sqrt{2} \sigma_{x}}}^{+\infty} \frac{\log \left(1+\mathrm{e}^{\mu_{x}-\sqrt{2} \sigma_{x} x}\right)}{\sqrt{\pi}} \mathrm{e}^{-\mathrm{x}^{2}} d x+ \\
& \int_{\frac{-\mu_{x}}{\sqrt{2} \sigma_{x}}}^{+\infty} \frac{\left(\mu_{x}+\sqrt{2} \sigma_{x} x+\log \left(1+e^{-\mu_{x}-\sqrt{2} \sigma_{x}}\right)\right)}{\sqrt{\pi}} \mathrm{e}^{-x^{2}} d x \tag{13}\\
& \approx 0.5 \mathrm{e}^{-0.5 \frac{\mathrm{H}_{\mathrm{x}}^{2}}{\sigma_{x}^{2}}}\left[\sigma_{\mathrm{x}} \sqrt{\frac{2}{\pi}}+\mu_{\mathrm{x}} \sum_{\mathrm{i}=1}^{\mathrm{R}} \mathrm{c}_{\mathrm{i}} \mathrm{t}_{0}^{\mathrm{i}}+\sum_{\mathrm{k}=1}^{\mathrm{K}} \mathrm{a}_{\mathrm{k}} \sum_{\mathrm{i}=1}^{\mathrm{R}} \mathrm{c}_{\mathrm{i}} \mathrm{t}_{\mathrm{k}}^{\mathrm{i}}\right] \\
& +0.5 \sum_{\mathrm{k}=1}^{\mathrm{K}} \mathrm{a}_{\mathrm{k}} \mathrm{e}^{0.5 \mathrm{k}^{2} \sigma_{\mathrm{x}}^{2}+k \mu_{\mathrm{x}}} \operatorname{erfc}\left(\frac{\mu_{\mathrm{x}}+\mathrm{k} \sigma_{\mathrm{x}}^{2}}{\sqrt{2} \sigma_{\mathrm{x}}}\right) \\
& E\left[\left(\log \left(1+\mathrm{e}^{\mathrm{x}}\right)\right)^{2}\right]=\int_{-\infty}^{+\infty} \frac{\left(\log \left(1+\mathrm{e}^{\mathrm{u}_{\mathrm{x}}+\sqrt{2} \sigma_{x} \mathrm{x}}\right)\right)^{2}}{\sqrt{\pi}} \mathrm{e}^{-\mathrm{x}^{2}} \mathrm{dx} \\
& =\int_{\frac{\mu_{x}}{\sqrt{2} \sigma_{x}}}^{+\infty} \frac{\left(\log \left(1+\mathrm{e}^{\mu_{x}-\sqrt{2} \sigma_{x}}\right)\right)^{2}}{\sqrt{\pi}} \mathrm{e}^{-\mathrm{x}^{2}} d x+ \\
& \int_{\frac{-\mu_{x}}{\sqrt{2} \sigma_{x}}}^{+\infty} \frac{\left(\mu_{x}+\sqrt{2} \sigma_{x} x+\log \left(1+\mathrm{e}^{-\mu_{x}-\sqrt{2} \sigma_{x}}\right)\right)^{2}}{\sqrt{\pi}} \mathrm{e}^{-\mathrm{x}^{2}} d x \tag{14}\\
& \approx 0.5 e^{-0.5 \frac{\mu_{x}^{2}}{\sigma_{x}^{2}}}\left[\begin{array}{l}
2 \mu_{\mathrm{x}} \sum_{\mathrm{k}=1}^{\mathrm{K}} \mathrm{a}_{\mathrm{k}} \sum_{\mathrm{i}=1}^{\mathrm{R}} \mathrm{c}_{\mathrm{i}} \mathrm{t}_{\mathrm{k}}^{\mathrm{i}}-2 \sigma_{\mathrm{x}}^{2} \sum_{\mathrm{k}=1}^{\mathrm{K}} \mathrm{ka}_{\mathrm{k}} \sum_{\mathrm{i}=1}^{\mathrm{R}} \mathrm{c}_{\mathrm{i}} \mathrm{t}_{\mathrm{k}}^{\mathrm{i}}+ \\
\left(\mu_{\mathrm{x}}^{2}+\sigma_{\mathrm{x}}^{2}\right) \sum_{\mathrm{i}=1}^{\mathrm{R}} \mathrm{c}_{\mathrm{i}} \mathrm{t}_{0}^{\mathrm{i}}+\frac{\sqrt{2} \sigma_{\mathrm{x}}}{\sqrt{\pi}}\left(\mu_{\mathrm{x}}+2 \sum_{\mathrm{k}=1}^{\mathrm{K}} \mathrm{a}_{\mathrm{k}}\right)+ \\
\sum_{\mathrm{k}=2}^{\mathrm{M}} \mathrm{~b}_{\mathrm{k}} \sum_{\mathrm{i}=1}^{\mathrm{R}} \mathrm{c}_{\mathrm{i}} \mathrm{t}_{\mathrm{k}}^{\mathrm{i}}
\end{array}\right] \\
& +0.5 \sum_{k=2}^{M} b_{k} \mathrm{e}^{0.5 \mathrm{k}^{2} \sigma_{x}^{2}+k \mu_{x}} \operatorname{erfc}\left(\frac{\mu_{\mathrm{x}}+k \sigma_{\mathrm{x}}^{2}}{\sqrt{2} \sigma_{\mathrm{x}}}\right)
\end{align*}
$$

$$
\left\{\begin{array}{l}
e^{-0.5 \frac{\mu_{x}^{2}}{\sigma_{x}^{2}}} \sum_{i=1}^{R} \frac{c_{i}}{\left(1+a y_{k}\right)^{i}} \quad \text { if } y_{k} \geq 0 \tag{15}\\
2 e^{0.5 k^{2} \sigma_{x}^{2}+k \mu_{x}}-e^{-0.5 \frac{\mu_{x}^{2}}{\sigma_{x}^{2}}} \sum_{i=1}^{R} \frac{c_{i}}{\left(1-a y_{k}\right)^{i}} \text { else }
\end{array}\right.
$$

I using the method proposed in this section unlike the baseline or the fast version of baseline method.

The disadvantage is that, there are subtractions in computing σ_{o}^{2} and μ_{o} using the method proposed unlike the baseline method or fast version of the baseline method. When we subtract one number from the other that are close to each other, there will be loss of significance [14]. When the value of σ_{x}^{2} is small, there will be subtraction of one number from the other that are close to each other. Therefore, the relative error will increase substantially due to the loss of significance, when the value of σ_{x}^{2} is small. As a result, for small values of σ_{x}^{2}, we may need to use more coefficients to keep the relative percent error under a prescribed value if we use the method described in this section. However, a few abscissa will be enough for computing σ_{o}^{2} and μ_{o} for small values
of σ_{x}^{2} using the baseline method or fast version of baseline method. Experimental results which discuss these will be given in the next section.

5. EXPERIMENTAL RESULTS

Accuracy for both proposed methods and the baseline method depends on the parameters σ_{x}^{2} and μ_{x}. Therefore, we must decide on ranges of σ_{x}^{2} and μ_{x}. We must also decide on the maximum acceptable errors for σ_{o}^{2} and μ_{o}. In this paper, the speeds of the proposed methods and baseline method were compared for $0<\sigma_{\mathrm{x}}^{2} \leq$ $1000,-100 \leq \mu_{\mathrm{x}} \leq 0$, and the maximum relative error in σ_{0}^{2} less than 1%.

Since we use numerical integration method to compute the parameters, it is not possible to compute the exact values of the parameters. Consequently, we must decide on the error. The percent relative error criterion is used in the experiments. $100\left(\frac{\hat{\sigma}^{2}-\sigma^{2}}{\sigma^{2}}\right)$ gives the percent error for variance where σ^{2} is the true variance and $\widehat{\sigma}^{2}$ is the computed variance. However, percent error criterion is not appropriate for the mean since the value of mean could be zero. $100\left(\frac{\hat{\mu}-\mu}{\sigma}\right)$ could be a good criterion for the mean where μ is the true mean and $\hat{\mu}$ is the computed mean. Experimental results showed that when the error criterion for variance is satisfied, the error criterion for mean will also be satisfied. Therefore, we consider to
satisfy only the error criterion for variance. After setting these error criteria, we can compare the computational complexity of the proposed methods and the baseline method.

Since the number of additions, subtractions and multiplications depend on the values of μ_{x}, and σ_{x}^{2}, it is not easy to compare computational complexity of the proposed methods and baseline method. Therefore, we executed the baseline algorithm and the proposed algorithms for estimating the parameters for 1000×1000 times on a computer with an intel i7 860 CPU without parallelizing the algorithm, and compared the execution time. To do this, the ranges of μ_{x} and σ_{x}^{2} were divided into 1000 equally spaced values and for each value of μ_{x} the algorithm were run for these 1000 different σ_{x}^{2} values.

We run an experiment to compare the execution time of baseline method and fast version of baseline method. Figure 1 shows the percent decrease in execution time for the fast version of baseline algorithm over the baseline algorithm for the number of abscissa from 3 to 190 . We set the number of coefficients K as 5 for approximating $\log \left(1+\mathrm{e}^{\mathrm{x}}\right)$. There are 31.19% and 44.75% decreases in execution time for 3 and 190 coefficients, respectively. The average (over all coefficients) decrease in execution time is 43.98%.

Figure 1. Number of coefficients versus percent decrease in execution time

We run an experiment to analyze the execution time compared to the number of coefficients. Figure 2 shows normalized execution time versus number of abscissa. The normalized execution time increases as the number of abscissa increase as expected since the number of exponents which demand most of execution time increases linearly as the number of abscissa increases.

Figure 2. Number of coefficients versus normalized execution time for the fast version of baseline method

We run an experiment to find the maximum value of variance σ_{x}^{2} that makes the maximum relative percent errorin σ_{o}^{2} less than one. The main effects on the error are the values of σ_{x}^{2}, and μ_{x} for both baseline method and fast version of baseline method. We approximate $\log \left(1+\mathrm{e}^{\mathrm{X}}\right)$ for the fast version of baseline method. Since the approximation error for $\log \left(1+\mathrm{e}^{\mathrm{x}}\right)$ is very small (less than 0.00567% for $\mathrm{K}=5$) the percent relative errors for both baseline and fast version of baseline method are almost same for the given σ_{x}^{2} value, μ_{x} value, and number of abscissa. Figure 3 shows number of coefficients versus variance (σ_{x}^{2}) that makes the maximum relative percent error in σ_{o}^{2} less than 1 when $-100 \leq \mu_{x} \leq 0$. Similarly, Figure 4 shows number of coefficients versus variance $\left(\sigma_{\mathrm{x}}^{2}\right)$ that makes the maximum relative percent error in σ_{o}^{2} less than 1 when $-10 \leq \mu_{x} \leq 0$. From these
figures, we can conclude that both σ_{x}^{2} and μ_{x} have significant effects on the number of abscissa that keeps the relative percent error under one. The ranges of μ_{x} are from -100 to 0 for Figure 3 and from -10 to 0 for Figure 4. We can observe from Figure. 3 and Figure 4 that less coefficients are needed to keep the maximum relative percent error in σ_{0}^{2} under one when the range of μ_{x} is small. We can also conclude from Figure 3 and Figure 4 that the execution time increases as the variance (σ_{x}^{2}) increases since more coefficients are needed to keep the relative percent error in σ_{o}^{2} less than 1 for large values of σ_{x}^{2}.

Table 2 shows the same information for Figure 3 and Figure 4 in terms of number of abscissas from 2 to 11 in addition to the normalized time for the fast version of baseline method. The first column shows the number of abscissa, second column shows the maximum variance value that keeps the percent error in σ_{o}^{2} under 1 for $-100 \leq \mu_{\mathrm{x}} \leq 0$ for the given number of abscissa. Similarly, the third column shows the maximum variance value that keeps the percent error in σ_{o}^{2} under one for $-10 \leq$ $\mu_{\mathrm{x}} \leq 0$ for the given number of abscissa. The last column shows the normalized execution time for the given number of abscissa.

Figure 3. Variance σ_{x}^{2} versus number of coefficients for ($-100 \leq \mu_{\mathrm{x}} \leq 0$), and relative error in σ_{0}^{2} less than 1% for the fast version of baseline method.

Figure 4. Variance σ_{x}^{2} versus number of coefficients for ($-10 \leq \mu_{x} \leq 0$), and relative error in σ_{0}^{2} less than 1% for the fast version of baseline method

We used 3, 4, and 5 coefficients for approximations of $\log \left(1+e^{x}\right),\left(\log \left(1+e^{x}\right)\right)^{2}$, and $\operatorname{erfc}(x)$, respectively for computation of σ_{o}^{2} and μ_{o} using the second proposed method. These
coefficients are given in Table III. Finally, we run an experiment to see the speed and accuracy of the second proposed method. We measured the normalized execution time as 1.873 for this method. The good thing about the second proposed method is that the normalized execution time does not increase (1.873 seconds) as the variance σ_{x}^{2} increases unlike the baseline and the fast version of baseline methods. The experimental results showed that the percent error in σ_{o}^{2} is less than 1 when $\sigma_{\mathrm{x}}^{2}>0.325$ and $-100 \leq \mu_{\mathrm{x}} \leq 0$. From these results we realize that the fastest method which keeps the percent error in σ_{o}^{2} less than one is the second proposed method for computing σ_{o}^{2} and μ_{o} for $-100 \leq \mu_{\mathrm{x}} \leq 0$ and $\sigma_{\mathrm{x}}^{2}>0.325$. The fastest method is the fast version of baseline method for $\sigma_{\mathrm{x}}^{2} \leq 0.325$ as seen from Table II. The fast version of baseline method that uses $2,3,4$, and 5 abscissa will be the fastest method for $\sigma_{\mathrm{x}}^{2} \leq 0.008,0.008 \leq \sigma_{\mathrm{x}}^{2} \leq 0.144,0.144 \leq \sigma_{\mathrm{x}}^{2} \leq$ 0.438 , and $0.438 \leq \sigma_{\mathrm{x}}^{2} \leq 0.830$, respectively for $-100 \leq \mu_{\mathrm{x}} \leq 0$ as seen from Table II.

Table 2. Number of coefficients versus variances $\left(\sigma_{\mathrm{x}}^{2}\right)$ and normalized execution time for fast version of baseline method that keeps the relative percent error in σ_{0}^{2} less than one

Functions	Index	Coefficients
$\log \left(1+\mathrm{e}^{\mathrm{x}}\right)$	1	0.9971742202972404545136
	2	-0.4437795339412708983673
	3	0.1417111754378272969746
$\left[\log \left(1+\mathrm{e}^{\mathrm{x}}\right)\right]^{2}$	2	0.9984854111176986179999
	3	-0.9510743713797964460355
	4	0.6370018861419275424396
	5	- 0.204687600754972720551
$\operatorname{erfc}(\mathrm{x})$	1	0.3179095096078142779206
	2	0.3202728919600088541841
	3	0.2377829824350161658231
	4	0.2941637083449997192020
	5	-0.1702177063239194154676
	a	0.56353

Table 3. Coefficient values for approximation $\log \left(1+e^{x}\right),\left[\log \left(1+e^{x}\right)\right]^{2}$, and $\operatorname{erfc}(x)$ which are used for the experiments

\# of coef-ficients	Variance $\left(\sigma_{\mathrm{x}}^{2}\right)$ $\left(-100 \leq \mu_{\mathrm{x}} \leq 0\right)$	Variance $\left(\sigma_{\mathrm{x}}^{2}\right)$ $\left(-10 \leq \mu_{\mathrm{x}} \leq 0\right)$	Normalized time
2	0.008	0.008	1.0
3	0.144	0.144	1.231
4	0.438	0.438	1.531
5	0.830	0.832	1.723
6	1.282	1.291	2.023
7	1.773	1.819	2.208
8	2.292	2.659	2.554
9	2.835	3.395	2.777
10	3.397	4.199	3.385
11	4.574	5.096	3.331

6. CONCLUSIONS

Two new fast methods were proposed to compute the mean and variance of the logarithm of a random variable which is obtained by adding two log-normally distributed random variables. It is shown that the first proposed method which is called the fast version of baseline method is the fastest method for $\sigma_{\mathrm{x}}^{2} \leq 0.325$ and $-100 \leq \mu_{\mathrm{x}} \leq$ 0 , and the second proposed method is the fastest method for $\sigma_{\mathrm{x}}^{2} \geq 0.325$ and $-100 \leq \mu_{\mathrm{x}} \leq 0$ which keeps the percent errors in σ_{0}^{2} under one. In addition to this, the execution time for the second proposed method does not increase as the variance σ_{x}^{2} increases unlike the baseline and the fast version of baseline method. The future work could be exploring fast algorithms for computing the covariance between the random variables which are logarithm of random variables obtained by adding two log-normally distributed random variables.

7. REFERENCES

1. Schwartz, S., Yeh, Y., 1982. On the Distribution Function and Moments of Power Sums with Lognormal Components. Bell Syst. Tech. Journal, 61, 1441-1462.
2. Li, X., Wu, Z., Chakravarthy, V.D., Wu, Z., 2011. A Low-complexity Approximation to Lognormal Sum Distributions via Transformed Log Skewnormal Distribution. IEEE

Transactions on Vechular Technology, 60(8), 4040-4045.
3. Gales, M.J.F., Young, S.J., 1993. Cepstral Parameter Compensation for Hmm Recognition in Noise. Speech Communications, 12, 231-240.
4. Gales, M.J.F., Young, S.J., 1995. A Fast and Flexible Implementation of Parallel Model Combination. In Proceedings of ICASSP, Detroit Michigan USA, 133-136.
5. Gales, M.J.F., Young, S.J., 1996. Robust Continuous Speech Recognition Using Parallel Model Compensation. IEEE Transactions on Acoustics, Speech, and Signal Processing, 4(5), 352-359.
6. Gales, M.J.F., Young, S.J., 1995. Robust Speech Recognition in Additive and Convolutional Noise Using Parallel Model Combination. Computer Speech and Language, 9, 289-307.
7. Fenton, L.F., 1960. The Sum of Lognormal Probability Distributions in Scatter Transmission Systems. IRE Transactions on Communications Systems, 8, 57-67.
8. Neelesh, B., Wu, B.J., Molisch, A.F., Zhang, J., 2007. Approximating a Sum of Random Variables with a Lognormal. IEEE Transactions on Wireless Communications, 6(7), 2690-2699.
9. Milevsky, M., Posner, S., 1998. Asian Options, the Sum of Lognormals and the Reciprocal Gamma Distribution. Journal of Financial and Quantative Analysis, 33(3), 409-422.

Fast Computation of Parameters of the Random Variable that is Logarithm of Sum of Two Independent Log-normally Distributed Random Variables
10. Romeo, M., Da Costa, V., Bardou, F., 2003. Broad Distribution Effects in Sums of Lognormal Random Variables. The European Physical Journal B, 32(4), 513-525.
11. Gong, Y., 1995. Speech Recognition in Noisy Environments: a Survey. Speech Communications, 16, 261-291.
12. Abramowitz, M., Stegen, I.A., 1965. Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. New York, USA: Dover, Publications.
13. Oppenheim, A.V., Schafer, R.W., 1989. Discrete-Time Signal Processing. Englewood Cliffs, New Jersey, USA: Prentice-Hall, Inc.
14. Kincaid, D., Cheney, W., 1996. Numerical Analysis. California, USA: Brooks/Cole Publishing Company.

[^0]: *Corresponding author (Sorumlu yazar): Zekeriya TÜFEKCİ, ztufekci@cu.edu.tr

