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Abstract 
 
The flow structure and turbulent characteristics of an airfoil at various Reynolds numbers (Rec = 1.5×104, 
2.0×104, 2.5×104) have been investigated considering two angles of attack (α = 10o and α = 12o). PIV 
measurements have been performed and time-averaged and instantaneous results were presented utilizing 
vorticity, profiles of streamwise velocity, Reynolds shear stress, and turbulent kinetic energy 
distributions. The results have shown that both the Rec and α significantly affect the flow characteristics 
around the airfoil. Furthermore, the change in flow characteristics between the stall and post-stall angles 
was elaborated and compared with each other, as being in good agreement with the available literature. 
The turbulent fluctuations in the airfoil wake, as well as in the suction side, were obtained to be more 
intense at post-stall angle compared with the stall condition. Besides, due to the earlier flow separation, 
post-stall condition presented a larger wake and the shedding of vortices formed by the leading and 
trailing edges of the airfoil. 
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Stol ve Stol Ötesi Durumlara Maruz Kalan Bir NACA0012 Kanat Profili 
Etrafındaki Akış Karakteristiklerinin Deneysel İncelenmesi 

 
Öz 
 
Bir kanat profilinin akış yapısı ve türbülans özellikleri, çeşitli Reynolds sayılarındaki (Rec =1,5×104,    
2,0×104, 2,5×104) iki atak açısı (α=10o ve α=12o) göz önüne alınarak incelenmiştir. PIV ölçümleri 
gerçekleştirilmiş ve zaman ortalamalı ve anlık girdap, akış hızı profilleri, Reynolds kayma gerilmesi ve 
türbülans kinetik enerji dağılımları kullanılarak sonuçlar sunulmuştur. Sonuçlar, hem Reynolds sayısının 
hem de hücum açısının, kanat profili etrafındaki özelliklerini önemli ölçüde etkilediğini göstermiştir. Stol 
ve stol ötesi açılarda akış karakteristiklerindeki değişiklik, mevcut literatürle iyi bir uyum içinde 
detaylandırılmış ve birbirleriyle karşılaştırılmıştır. Hem kanat profili art izinde hem de emme yüzeyinde 
oluşan türbülans çalkantılarının, stol ötesi açıda daha şiddetli olduğu elde edilmiştir. Bunun yanında, daha 
erken akış ayrılması sebebiyle stol ötesi durum, kanat profilinin hücum ve firar kenarlarından doğan 
girdapların kopması ile birlikte daha geniş bir art izi yapısı göstermiştir. 
 
Anahtar Kelimeler: Kanat profili, Stol, PIV, Akış yapısı 
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1. INTRODUCTION 
 
The stall condition of an airfoil is a subject of 
interest due to its importance in aerodynamics, and 
turbomachinery applications (propellers, turbines). 
When the flow separates from the leading edge at 
sufficiently large angle of attack, α, oscillations in 
the velocity and pressure (on the suction side) may 
occur, resulting in high amplitude vibrations on the 
airfoil. The consequences of stall may be an 
airplane crash or reduced efficiency of a 
turbomachine. The responsible mechanism for stall 
behavior has been reported by various researchers 
[1-3], i.e., at large attack angles, α, laminar 
separation bubble (LSB) formed on the airfoil’s 
suction side starts bursting and cannot reattach to 
the airfoil’s upper surface. However, the dynamics 
of the flow based on the separation mechanism 
under stall remain not fully understood and need 
further investigations to improve engineering 
designs.  Mainly three different stall types have 
been reported by McCullough and Gault [4]; 
trailing edge stall, leading-edge stall, and 
combined trailing-leading edge stall. Through 
them, the combined stall has the most detrimental 
effect on the aero-hydro dynamic characteristics of 
the engineering devices. The combined (or full) 
stall is realized when angle of attack approaches 
far beyond the post-stall angle of the airfoil. 
 
On the other side, the low Reynolds number 
aerodynamics [5] have taken little attention on the 
research community and still need to be analyzed 
in detail due to its significance, especially on 
improving unmanned aerial vehicles [6], as well as 
the turbomachines. Wang et al. [7] have reported 
three flow regimes to present individual flow 
structures on the suction side of a NACA0012 
airfoil.  Ultra-low (<104), low (104-3.0×105), 
moderate (3.0×105-5.0×106) and high (>5.0×106) 
Reynolds number flows were revealed in their 
research where eight distinct flow structures 
dependent on α, were described. Direct numerical 
simulations of Rodriguez et al. [3] observed that 
the structures of separated flow at two different 
stall angles are slightly different, and 
corresponding coherent structures also present 
different modes, in agreement with Huang and Lin 
[8]. It should be noted that these differences in 

flow structures still need to be further investigated 
in detail, and available numerical works should be 
supported by experimental studies. In this regard, 
stall and post-stall conditions of a NACA0012 
airfoil at low Reynolds numbers are investigated 
by Particle Image Velocimetry with this study. 
Two angles of attack, α = 10o and α = 12o were 
considered at chord-based Reynolds numbers of 
Rec = 1.5×104, 2×104, 2.5×104. Through them, the 
results obtained at Rec = 2.0×104 were further 
elaborated since, at this Reynolds number, α = 10o 
and α = 12o correspond to stall and post-stall 
angles, respectively for the NACA0012 airfoil 
according to [7, 9, 10]. It is hoped from this study 
that the presented results may be beneficial to 
contribute to the knowledge on low-Reynolds 
number aero-hydrodynamics prone to stall 
conditions regarding various engineering 
applications. 
 
2. EXPERIMENTAL METHOD 
 
The experiments were performed in a closed-loop 
water channel which has an 8 m-long test section 
with a spanwise dimension of 1 m and a height of 
0.75 m. The turbulence intensity of the free stream 
velocity at the measurement plane is measured to 
be less than 2%. For the airfoil, one of the most 
studied shapes in the literature, NACA0012, was 
selected and manufactured utilizing 3D printing. 
High surface quality was obtained by a final 
polishing of the surface. The airfoil has a chord 
length of c=0.1 m and a span of b=0.2 m which 
corresponds to an aspect ratio of AR=b/c=2. 
Endplates with this AR satisfy the spanwise 
uniformity of the flow, according to Boutilier and 
Yarusevych [11]. Hence, the airfoil was fixed with 
endplates, to eliminate the wall and wing-tip 
effects on the flow structure. The measurements 
were performed 5.5 m away from the inlet of the 
test section, and water height was kept constant as 
hw=0.5 m. A table was used as the bottom endplate 
to locate the airfoil at the center of the test section 
to eliminate the effect of the turbulent boundary 
layer developed on the side and bottom walls (see 
Figure 1). The coordinate system was located as 
started by the leading edge of the airfoil.
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4. CONCLUSIONS  
 
In this study, PIV measurements were performed 
around a NACA0012 airfoil to examine the effect 
of Reynolds number on the flow characteristics, as 
well as the change in turbulent fluctuations at stall 
and post-stall angles. A total of six cases were 
considered for the study having α=10o and α=12o 
angle of attack and Reynolds numbers of                  
Rec=1.5×104, 2×104, 2.5×104. According to the 
results obtained, it is found that the effect of Rec on 
the flow structure is predominantly observed for    
α=12o, i.e., the separated flow region was larger, 
and the turbulent fluctuations were more 
significant compared with α=10o. At post-stall 
angles, it was revealed that there is no direct 
relationship between the momentum deficit and 
Rec according to the velocity profiles evaluated on 
the suction side, as well as the airfoil wake. 
 
Throughout the parameters, the considered angles 
corresponded to stall and post-stall conditions of 
the airfoil at Rec=2.0×104 and results were found to 
be in consistent with Celaver et al. [9] and Wang et 
al. [7]. The transition from stall to post-stall was 
unveiled quantitatively. It was shown that the 
turbulent fluctuations dramatically change from 
stall to post-stall angle in which a significant 
increase in their magnitudes occurs for the post-
stall condition. An increase of 66.7% in the 
maximum Reynolds shear stress was obtained at 
post-stall angle compared with the stall angle 
which is due to the earlier and massive separation 
of the flow. The underlying mechanism of greater 
turbulent fluctuations at post-stall angle was 
explained by the formation of the vortices 
evaluated at the leading and trailing edges, finally 
interacting with each other. Eventually, vortex 
shedding was observed at post-stall angles, which 
can induce the vibrations on the airfoil. 
 
It is hoped that the results of the present work 
might help to understand the physical mechanism 
of stall conditions in airfoils. Besides, this study 
may be extended further to investigate the vortex 
shedding characteristics, especially at post-stall 
angles. 
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