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Abstract 
 

The iron and steel industry is one of the essential sector for the industrial and economic development of a 

country. The most common problem in iron and steel industry is to determine the ultimate tensile strength 

of the product. The raw materials that are used in the Prestressed Concrete (PC) strand product are 

deformed under force and their shape and size are changed since the characteristics of them are not 

constant. To understand the material properties of the product such as the yield and the ultimate tensile 

strength, some mechanical tests are carried out. The product, the time and the labor loss occured in these 

mechanical tests reveal the need to develop a prediction method based on non-destructive measurement. 

In this study, the mechanical properties of PC strand product is predicted by using artificial neural 

networks (ANN). 'Feed-Forward Backpropagation (FFBP)' has been preferred since it is the most accurate 

network type for the current process. To determine the ultimate tensile strength, the data such as the load 

applied to the material (loadcell output), the DC voltage and the DC current of the induction furnace, the 

speed of the PC strand line, the temperature of the induction furnace, the temperature of the quench tank 

and the diamater of the PC strand product are collected from a real production line and are utilized as the 

input parameters of the ANN in the simulation environment. The study illustrates that the ANN model 

give a very good prediction of the ultimate tensile strength of PC strand. 

 
Keywords:  Prestressed concrete strand, Tensile test, Artificial neural networks, Feed-forward 

backpropagation  

 

Yapay Sinir Ağ Modeli Kullanılarak Ön Germeli Beton Demeti  

Maksimum Çekme Mukavemetinin Tahmini 

 

Öz 

 
Demir ve çelik endüstrisi, bir ülkenin endüstriyel ve ekonomik kalkınması için vazgeçilmez sektörlerden 

biridir. Demir ve çelik endüstrisindeki en yaygın sorun, ürünün maksimum çekme mukavemetini 

belirlemektir. Ön germeli beton demeti (ÖGBD) ürününde kullanılan hammaddeler kuvvet altında 

                                                 
*Sorumlu yazar (Corresponding author): Mehmet Uğraş CUMA, mcuma@cu.edu.tr 

Geliş tarihi: 09.07.2018            Kabul tarihi: 15.10.2018 



Prediction of Ultimate Tensile Strength of Prestressed Concrete Strand using Artificial Neural Network Model 

188  Ç.Ü. Müh. Mim. Fak. Dergisi, 33(3), Eylül 2018 

deforme olmakta ve karakteristikleri sabit olmadığından şekilleri ve boyutları değişmektedir. Ürünün, 

akma ve maksimum çekme mukavemeti gibi malzeme özelliklerini anlamak için bazı mekanik testler 

gerçekleştirilir. Bu mekanik testlerde ortaya çıkan ürün, zaman ve iş gücü kaybı, tahribatsız ölçümlere 

dayanan bir tahmin metodu geliştirme ihtiyacını ortaya koymaktadır. Bu çalışmada, ön germeli beton 

demeti ürününün mekanik özellikleri yapay sinir ağları (YSA) kullanılarak tahmin edilmiştir. Mevcut 

işlem için en doğru ağ tipi olduğundan 'İleri Beslemeli Geri Yayılım (İBGY)' tercih edilmiştir. 

Maksimum çekme mukavemetini belirlemek için, malzeme üzerine uygulanılan yük (yük hücresi çıkışı), 

indüksiyon fırınının DC gerilimi ve DC akımı, ÖGBD hattının hızı, indüksiyon fırınının sıcaklığı, 

soğutma tankının sıcaklığı ve ÖGBD ürününün çapı gibi veriler gerçek bir üretim hattından toplanmakta 

ve simülasyon ortamında YSA’nın girdi parametreleri olarak kullanılmaktadır. Çalışma, ANN modelinin, 

ön gerilmeli beton demetinin maksimum çekme mukavemetine dair çok iyi tahminde bulunulduğunu 

göstermektedir. 

 

Anahtar Kelimeler: Öngermeli beton demeti, Çekme testi, Yapay sinir ağları, İleri beslemeli geri 

yayılım 

 

1. INTRODUCTION 
 

The iron and steel industry, one of the most 

important heavy industry sectors, supplies raw 

materials to many important industries such as 

construction, transportation, automotive and 

machinery. Determining the tensile strength of the 

raw materials is one of the most commonly 

encountered problem in iron and steel industry. In 

the present industrial conditions, the tensile 

strength of steel materials is determined by the 

tensile test, which is widely used method to 

determine the mechanical properties of materials. 

With this test, it is tried to determine the resistance 

of a material towards a static and slowly applied 

load. The amount of elongation of the material is 

measured using an extensometer; the applied load 

(force) is measured using a load cell and a stress-

strain diagramme, which gives information about 

the strength, ductility, and rigidity of the material, 

is obtained [1].  

 

The tensile test process is incredibly long, 

inconvenient and costly due to the operator must 

take the PC strand specimens and test them 

continuously. As an alternative to the traditional 

tensile test, non-destructive measurement based 

prediction methods have arisen. With the 

prediction of properties of materials, the time spent 

for testing is avoided and the cost of the product is 

reduced remarkably. 

In recent years, a significant amount of research 

has been carried out in the area of non-destructive 

estimation of mechanical properties of the raw 

materials used in the iron and steel industry. In a 

majority of these studies, researchers have 

attempted the Artificial Neural Network (ANN) 

approach in the estimation of the mechanical 

properties of the materials. In [2], the fatigue crack 

growth rate of nickel base superalloys has been 

modelled by using ANN model within a Bayesian 

framework. Cool et al. [3] implemented ANN to 

model the yield and ultimate tensile strengths of 

weld deposits as a function of the chemical 

composition, welding conditions and heat 

treatment parameters. In [4], fatigue behavior of 

unidirectional glass fiber/epoxy composite laminae 

is predicted with training ANN by using the input 

data of maximum stress, stress ratio and fiber 

orientation angle. Akbari et al. [5] proposed four 

ANN based models to predict the features of the 

nanoparticle reinforced composites. Malinov et al. 

[6] developed a model for the analysis and 

prediction of the correlation between processing 

(heat treatment) parameters and mechanical 

properties in titanium alloys by applying ANN. In 

[7], a model is developed for the prediction of the 

correlation between alloy composition and 

microstructure and its tensile properties in gamma-

based titanium aluminide alloys through the ANN 

by using the inputs of alloy composition, 

microstructure type and work (test) temperature. In 

[8], a three-dimensional finite element model 

(FEM) along with establishing the ANN is used 

https://www.sciencedirect.com/topics/materials-science/tensile-properties
https://www.sciencedirect.com/topics/materials-science/titanium


Mehmet Uğraş CUMA, Hayrullah ÖZEL, Tahsin KÖROĞLU 

Ç.Ü. Müh. Mim. Fak. Dergisi, 33(3), Eylül 2018  189 

for the evaluation of ultimate torsional strength of 

reinforcement concrete beams. Jeyasehar et al. [9] 

carried out a study for the assessment of damage in 

prestressed concrete (PC) beams using its present 

stiffness and natural frequency as the test inputs of 

the feed-forward ANN trained by back propagation 

(BP) algorithm. In [10], the effects of chemical 

composition and process parameters on the tensile 

strength of hot strip mill products have been 

researched by using ANN. In [11], feed-forward 

back-propagation (FFBP) ANN has been used for 

the prediction of the mechanical properties of 

galvanized coils from its chemistry and key 

galvanizing process parameters. In [12], the 

optimized ANN model with Levenberg–Marquardt 

algorithm is presented for the estimation of 

mechanical properties of carbon fiber through high 

temperature furnace. 

 

Although ANNs have been used to determine the 

various mechanical properties for different steel 

materials and industrial products, the prediction of 

the ultimate tensile strength of the PC strand 

product has not been studied before. In this paper, 

the ultimate tensile strength of the PC strand, 

which is considered as the highest value-added 

product in the metal sector, is estimated by using 

ANN. Thus, it is aimed to avoid labor and 

production losses with the prediction of the 

ultimate tensile strength non-destructively. The 

input data taken from the production line such as 

the loadcell output, the DC voltage and the DC 

current of the induction furnace, the speed of the 

PC strand line, the temperature of the induction 

furnace, the temperature of the quench tank and 

the diamater of the PC strand product are used to 

train the FFBP based ANN model.  

 

The remainder of the paper is organized as 

follows. Section 2 presents the brief information 

about the PC Strand line and the key procedures of 

the tensile test. Section 3 provides the description 

of the FFBP ANN based estimation method. The 

simulation results are given and discussed in 

Section 4. Finally, conclusions of the study are 

highlighted in Section 5. 

 

2. PC STRAND PRODUCTION LINE 
 

PC strand, consisting of seven wires, six of which 

are helically wrapped around one center wire, are 

used in the areas such as bridge girder production, 

prefabricated construction elements, ground and 

mine anchorages and nuclear power stations. The 

production flow of the PC strand is given in    

Figure 1. 

 

 
Figure 1. PC Strand production flow [13] 
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The wire is made by a rod or bar which is sunk in 

acid pickling bath and then is coated with a 

chemical substance to roll it easily in drawing 

machine. Coated raw material (a rod or bar) passes 

through drawing machine and thereby is lubricated 

in die boxes and is cooled on the drawing blocks 

which are revolved by electric motors. 

 

High tensile strength, excellent prestressing in 

small edges and less labour for anchorage and 

other applications are the core benefits of the PC 

strand product. The PC strand products are 

produced in accordance with the ASTM, BS, EN, 

TSE and JIS standards. 

 

2.1. Tension Tests and Procedures 

 

Tension test is an approval test for the 

specification of materials and is extensively 

utilized to provide a basic design information on 

the strength of materials. The main parameters that 

describe the stress-strain curve obtained during the 

tension test are the ultimate tensile strength (UTS), 

the yield strength (σy), elastic modulus (E), 

percent elongation (ΔL%) and the reduction in 

area (RA%). Toughness, resilience, Poisson’s 

ratio(ν) can also be gained by the use of this 

testing technique. 

 

HOLDING
GRIPS

EXTENSIOMETER

 
Figure 2. Tension test procedure 

 

The tension test procedure is displayed in Figure 2. 

A test piece of the strand is located in the serrated 

teeth of the tension test machine. The testing speed 

is regularly adjusted to approximately 5 kips per 

minute. The extensometer is located on the strand 

before the test begins. The extensometer measures 

displacements at mid-length of the test specimen. 

The knife-edges of the extensometer have a 

tendency to slip on the twisting strand. To reduce 

this matter, two-sided tape and multiple rubber 

bands are used to keep the extensometer vertical 

and tight against the strand. The data acquisition 

system saves data automatically every second 

during testing. 

 

2.1.1. Ultimate Tensile Strength 

 

The ultimate tensile strength (UTS) is computed 

by dividing the maximum load by the initial cross-

sectional area of the test sample and is expressed 

in megapascals (MPa) (Eq. 1). The diagram of the 

UTS is illustrated in Figure 3. 
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Figure 3. Stress-strain graph 

 

3. PREDICTION OF UTS WITH ANN 

 

ANN is a statistical method used for mapping the 

non-linear correlation. ANN structure is commonly 

used for many applications to create the 

relationships in data [15]. In this study, ANN is 

used to predict the relationship between the 

ultimate tensile strength of the Grade 270, which is 

the raw material of the PC strand, and the various 

input data digitally received via the sensors from a 

real production line. 
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The duration of a single charge of the PC strand 

line varies from approximately 6 to 8 hours, when 

there is no fault on the line. An average of two 

hours is required for a new charge. Thus, this cycle 

can continue up to three times in a day. At the end 

of each charge, samples are taken from the product 

and mechanical tests are carried out. Every single 

test result is used to construct the training data for 

the ANN output. During the charging period, the 

input data is stored in the database. 

 

The input data is comprised of the load applied to 

the material (LDCLL), the DC voltage of the 

induction furnace (INDVDC), the DC current of 

the induction furnace (INDIDC), the speed of the 

PC strand line (SPEED), the temperature of the 

induction furnace (INDTPR), the temperature of 

the quench tank (TNKTPR) and the diameter of 

the PC strand product (DMTR). The ultimate 

tensile strength (UTS) is predicted by using the 

FFBP algorithm. 

 

FFBP model is as shown in Figure 4 has three 

layers named as input layer, hidden layer and 

output layer. The training examples are received 

from experimental data. The network generates an 

output by processing the input and compares the 

output with the target. The difference between the 

target and the output determines the error. Then 

the synaptic weights of the network are modified 

by the training algorithm proportional to the error. 

The goal of the training process is to reduce the 

error below a predetermined value on an iterative 

basis. This requires a presentation of many training 

examples, which constitutes a training set. This 

form of administered learning is called error 

correction learning [16]. A schematic 

representation of the error-correction learning is 

shown in Figure 5. 
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Figure 4. FFBP ANN model 
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Figure 5. Schematic of error-correction learning 

 

3.1. Training Functions 

 

There are several training functions related to 

ANN in MATLAB library. Generally, the 

Levenberg-Marquardt (trainlm) algorithm provides 

the fastest convergence for a few hundred weights. 

This advantage is especially noticeable if very 

accurate training is required. In many cases, 

‘trainlm’ is able to obtain lower mean square errors 

(MSE) than any of the other algorithms tested. 

However, when the number of weights in the 

network increases, the advantage of ‘trainlm’ 

decreases. In addition, ‘trainlm’ performance is 

relatively poor in pattern recognition. Besides, the 

storage requirements of ‘trainlm’ are larger than 

the other functions. The Resilient Backpropagation 

(trainrp) function is the fastest algorithm on pattern 

recognition problems. However, it does not 

perform well on function approximation problems. 

Its performance also degrades as the error goal is 

reduced. The memory requirements for this 

algorithm are relatively small in comparison to the 

other algorithms considered. The Broyden-

Fletcher-Goldfarb-Shanno (BFGS) Quasi-Newton 

(trainbfg) function is similar to that of ‘trainlm’. It 

does not require as much storage as ‘trainlm’, but 

the required computation increases geometrically 

with the size of the network, because the 

equivalent of a matrix inverse must be computed at 

each iteration. The Variable Learning Rate 

Backpropagation (traingdx) function is usually 

much slower than the other methods and has the 

same storage requirements as ‘trainrp’ but it can 

still be useful for some problems. There are certain 

situations in which it is better to converge more 

slowly. The Scaled Conjugate Gradient (trainscg) 

function notably, seem to perform well over a wide 

variety of problems, especially for networks with a 

large number of weights. The ‘trainscg’ algorithm 

is almost as fast as the LM algorithm on function 

approximation problems (faster for large networks) 

and is almost as fast as ‘trainrp’ on pattern 

recognition problems. Its performance does not 

degrade as quickly as ‘trainrp’ performance does 

when the error is reduced. The conjugate gradient 

function have relatively modest memory 

requirements and the most accurate, significant 

and interpretable results of our study are revealed 

by it [17]. 
 

3.2. Performance Functions 

 

Mean square error (MSE) is a network 

performance function that is probably the most 

commonly used error metric. It penalizes larger 

errors because squaring larger numbers has a 

greater impact than squaring smaller numbers. The 

MSE is the sum of the squared errors divided by 

the number of observations. At is the actual value 

(target), Ft is the forecasted value (output) and n is 

the number of testing data. The equation of MSE is 

presented in Eq. 2. 

 

 
n 2

t tt 1
A F

MSE
n







               (2) 

 

The root mean square error (RMSE) is the square 

root of the MSE. The equation of RMSE is 

presented in Eq. 3. 

 

 
n 2

t tt 1
A F

RMSE
n







        (3) 

 

Mean Absolute Percentage Error (MAPE) is the 

average of absolute errors divided by actual 

observation values. MAPE is the average absolute 

percent error for each time period or forecast 

minus actuals divided by actuals. The equation of 

MAPE is expressed in Eq. 4. 

 

n t t

t 1
t

A F

A
MAPE *100

n
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
                     (4) 
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The coefficient of determination (R2) is one 

measure of how well a model can predict the data 

and falls between 0 and 1. The higher the value of 

R2, the better the model is at predicting the data. 

The equation of R2 is given in Eq. 5. 

 

 

 

n 2

t t2 t 1

n 2

t tt 1

A F
R 1

A mean( A )






 






              (5) 

 
MAPE and R2 performance functions have been 

used at the end of this study to compare the 

performance of the training algorithms. 

3.3. Training the Neural Network 

 

The training data, consisting of 119 rows, is 

gathered from a real PC strand production line. 

This data consists of 7 input variables and 1 output 

variable. Six of the input variables (LDCLL, 

INDVDC, INDIDC, SPEED, INDTPR and 

TNKTPR) are taken from the line using a software 

developed on a programmable logic controller 

(PLC) automatically. The last input variable 

‘DMTR’ and output variable ‘UTS’ are obtained 

from the tensile test results. Table 1 summarizes 

the ranges of training data used to train the ANNs. 

 

Table 1. The ranges of training data used to train the ANN 

 
INPUT VARIABLES OUTPUT V. 

LDCLL INDVDC INDIDC SPEED INDTPR TNKTPR DMTR UTS 

MIN. 76.368 437.056 90.007 398.902 51.07 693.008 12.58 1850.4 

MAX. 126.434 530.088 129.819 399.763 76.172 933.377 15.76 1989.2 

The flowchart used in the study is given in      

Figure 6. Training data must be splitted into 

“inputs” and “targets” matrices. For the present 

study, as there are 7 input variables, “inputs” 

matrix will consist of 7 columns. “targets” matrix 

is composed of ‘UTS’ output variable. After 

selection of input and target matrices, training, 

validation and testing percentages are determined. 

In addition, number of hidden neurons, training 

rate, learning rate and training function must be 

selected. In the next stage, neural network is 

created with the selected parameters and trained 

using training data supplied to it. Validation and 

testing data are used to measure the performance 

of the trained network. R2 is used for performance 

evaluation. If the R2 is in the range of 0 and 1, then 

the actual data and neural network output is 

compared with a ±25 MPa in accuracy. If the 

neural network output is close to the actual data, 

the network is considered as successful. Otherwise, 

number of neurons, training rate, learning rate 

parameters are changed and same procedure is 

applied. The same flowchart is used for each of the 

training algorithms mentioned in the section title 

3.1. 

 
 

Figure 6. Flowchart of the algorithm 
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4. RESULTS AND DISCUSSION 
 

Using the procedure explained in the above 

section, several ANNs are trained for different 

parameters (number of neurons in first hidden 

layer (N1), number of neurons in second hidden 

layer (N2), learning rate, training rate and training 

function). The first 9 rows of Table 2 is used to 

compare the performances of different training 

algortihms. As it can be seen from the table, 

“trainscg” gives the best performance for current 

problem. 

 

After many trials and literature search, the 

parameters are chosen as follows: 

 

 Neuron 1 (N1) = 30 

 Neuron 2 (N2) = 30 

 Learning Rate (lrate) = 0.70 

 Training Rate (trate) = 0.70 

 Training Function = trainscg 

 

The results using to the parameters given above are 

displayed in Figure 7 and Figure 8 respectively. 

Also, MAPE and R2 for this parameters are given 

in the last row of Table 2.  

Table 2. The pivot table of all the tests performed 

Test 

Number 
N1 N2 

Learning 

Rate 

Training 

Rate 

Training 

Function 
MAPE R2 

T1 10 10 0.70 0.70 ‘trainlm’ 0,6817 0,7966 

T2 10 10 0.70 0.70 ‘trainbfg’ 0,7089 0,7594 

T3 10 10 0.70 0.70 ‘trainbrp’ 0,8934 0,7839 

T4 10 10 0.70 0.70 ‘traincgb’ 0,8339 0,3226 

T5 10 10 0.70 0.70 ‘traincgf’ 0,8707 0,2932 

T6 10 10 0.70 0.70 ‘traincgp’ 0,8693 0,0045 

T7 10 10 0.70 0.70 ‘trainoss’ 0,5925 0,6774 

T8 10 10 0.70 0.70 ‘traingdx’ 1,0594 -0,6076 

T9 10 10 0.70 0.70 ‘trainscg’ 0,665 0,8166 

T10 30 30 0.70 0.70 ‘trainscg’ 0,5551 0,8567 

 
The performance is evaluated by considering the 

MAPE and R2 values. Calculation of the MAPE 

and R2 have been given in Eq. 4 and Eq. 5 

respectively. The MAPE is one of the most 

popular measure for forecasting error and is 

desired to be close to zero. The R2 is another 

commonly used statistical measure of how close 

the data are to the fitted regression line. The R2 

simply explains how good is the developed model 

when compared to the baseline model. The R2 can 

take value between 0 and 1 where values closer to 

‘0’ represent a poor fit while values closer to ‘1’ 

represent a perfect fit. Figure 7 shows the MAPE 

and R2 values for the case (Test number 10) as 

0.5551 and 0.8567 respectively. 

 

The correlation between target (actual data) and 

output (forecasted data) is represented in Figure 8. 

It is seen that R=0.932 that means there is a 

positive relation between target and output. 

Minimum limit of the estimated value is obtained 

as 1866.7 MPa when the actual value is 1888.7 

MPa. The difference between the estimated and 

actual value is found to be 22 MPa. When the 

prediction performance is evaluated, it can be said 

that the result is quite well since the output is 

estimated within ±25 MPa range. 
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Figure 7. Training with scaled conjugate gradient function: R2=0.8567, MAPE=0.5551 

 

 
Figure 8. Target-output graph 

 

5. CONCLUSION 
 

It has been shown that in today’s industrial 

conditions, the ultimate tensile strength of the PC 

strand product can be predicted by ANNs in a non-

destructive way and without losses. 

 

As specified in ASTM A416/A416M-17 standard, 

the tensile strength for grade 270 raw material of 

the PC strand product must be higher than the 

value of 270 ksi (1860 MPa). In this study, the 

lowest estimated value of the tensile strength is 

obtained as 1866.7 MPa with the ANN while the 

actual value is recorded as 1888.7 MPa. The ANN 

model provides a very good prediction of the 

ultimate tensile strength of PC strand with a 

sensitivity of ± 25 MPa.  

 

In this study, 83 training data and 36 test and 

verification data were used by the neural network 

and it can be interpreted that the network has very 

few data samples. If more data are collected from 
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PC strand line, more accurate, sensitive and 

reliable results can be obtained. By incorporating 

different inputs into the neural network, such as 

expansion of the data set and chemical 

composition, predicted values can be realized 

much more precisely. 
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