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Abstract 

 
This study presents a Linear Quadratic Optimal (LQR) controller design for an inverted pendulum on a 

cart using the Artificial Bee Colony (ABC) algorithm. Main design parameters of the linear quadratic 

regulator are the weighting matrices. Generally, selecting weighting matrices is managed by trial and 

error since there exists no apparent connection between these weights and time domain requirements such 

as settling time, steady state error, and overshoot percentage. In this study after deriving the mathematical 

models of the inverted pendulum on a cart and the DC motor, an LQR controller is designed using the 

ABC algorithm to determine weighting matrices to overcome LQR design difficulties. The comparison 

and experimental results justify that the ABC algorithm is a very efficient way to determine LQR 

weighting matrices in comparison with a method in literature. 
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Yapay Arı Kolonisi Algoritması ile Bir Arabalı Ters Sarkacın Lineer Kuadratik 

Kontrolü: Deneysel Bir Çalışma 

 

Öz 

 
Bu çalışmada, Lineer Kuadratik Regülatör (LQR) ile bir ters sarkacın kontrolü için, Yapay Arı Kolonisi 

(ABC) optimizasyon algoritmasına dayalı bir metot önerilmiştir. LQR’ın temel tasarım parametreleri 

ağırlık matrisleridir. Ağırlık matrislerinin değerleri ile yüzde aşımı, yerleşme zamanı ve kararlı hal hatası 

gibi zaman uzayı performans kriterleri arasında doğrudan bir ilişki olmadığı için bu matrislerin seçimi 

genellikle deneme yanılma yöntemiyle gerçekleştirilmektedir. Bu çalışmada arabalı ters sarkaç ve bu 

mekanizmayı hareket ettiren DC motorun matematiksel modellerinin elde edilmesinin ardından sürü 

zekası temelli bir optimizasyon algoritması olan ABC algoritması kullanılarak bir LQR kontrolör 

tasarlanmıştır. Karşılaştırma ve deney sonuçları, ABC algoritmasının literatürde önerilen bir yöntem ile 

karşılaştırıldığında ağırlık matrislerinin belirlenmesinde daha etkin bir yol olduğunu göstermiştir. 

 
Anahtar Kelimeler: Yapay arı kolonisi algoritması, Lineer kuadratik regülatör, Ters sarkaç 
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1. INTRODUCTION 
 

Controlling an inverted pendulum on a cart is a 

challenging problem due to the various characters 

of the system: including highly unstable, 

nonlinear, non-minimum phase, underactuated, 

and single input-two output mechanical system. 

Several substantial control systems can be 

modelled with the help of inverted pendulum [1]. 

Inverted pendulum reveals many interesting 

system - theoretic properties and its dynamics are 

fundamental for balancing problems [2,3]. 

 

The inverted pendulum system set up consists of a 

cart, a pendulum, a DC motor, and a driving 

mechanism. There are two equilibrium points 

being stable (downwards position) and unstable 

(upwards position) for this system. Hence, there 

are two control objectives for the inverted 

pendulum system. First one is to swing the 

pendulum up to unstable equilibrium from stable 

equilibrium and the second one is to maintain the 

unstable equilibrium position. This study will 

focus on the design of an optimal controller for the 

second control objective for the inverted pendulum 

system. During this study Feedback Instruments’ 

digital pendulum system [4] is used to create a 

more realistic control system. 

 

One of the widely used optimal control techniques 

is the Linear Quadratic Regulator (LQR) [5, 6]. 

The challenging part of the LQR controller design 

is to choose its weights for states and control 

signal [7]. Generally selecting these matrices is 

based on the knowledge of control engineers or 

designers and this process takes a long time since 

it is carried out by trial and error. Various methods 

to determine suitable weighting matrices have been 

proposed [5, 8]. One of the methods for choosing 

weighting matrices for LQR is Bryson’s rules [9]. 

According to this method 𝑄 can be taken as 

Q=CTQ̅C. Since matrix 𝐶 includes important 

outputs, these states are included within the cost. 

Also another method for choosing weighting 

matrices for linear quadratic control of an inverted 

pendulum is proposed by Ghosh et al. [10]. 

According to this method, the 𝑄 matrix can be 

chosen as 𝑄 = 𝑑𝑖𝑎𝑔{𝑞11, 𝑞22, 𝑞33, 𝑞44} and R=r11 

where q
11

=500q, q
22

,q
33

=20q, q
44

=q and r11=10n. 

𝑞 and 𝑛 should be estimated by trial and error [10]. 

 

Beside these methods, recently many researchers 

have proposed artificial intelligence algorithms 

such as Genetic Algorithms (GA) and Particle 

Swarm Optimization (PSO) algorithm for this goal 

[11,12]. In addition, there is another computational 

intelligence algorithm referred to as the Artificial 

Bee Colony (ABC) algorithm for updating the 

LQR weights. A discrete-time LQR controller 

using the ABC algorithm is designed based on 

only simulation [13]. However, real 

implementation is very important to show 

efficiency of the method. The ABC algorithm was 

introduced by Karaboga [14,15] as a novel 

method. It is a fast converging algorithm and has 

only a few parameters to be adjusted. Because of 

these superiorities it is utilized to find a solution 

for many higher dimensional linear or nonlinear 

problems [15,16]. 

 

This study proposes a method that selects 

appropriate weighting matrices for an LQR 

controller to stabilize cart position and pole angle 

of a nonlinear inverted pendulum system with DC 

motor while minimizing settling time, steady state 

error and overshoot percentage of the output signal 

as position of the cart. The ABC algorithm is 

employed to determine weighting matrices.  

 

2. INVERTED PENDULUM 
 

Generally, an inverted pendulum system is 

composed of a cart and a rod hinged it. The cart is 

moved by a DC motor. The DC motor supplies 

some force needed for motion of the cart via a 

pulley-belt mechanism. Dynamics of the inverted 

pendulum system can be represented as a set of 

equations which is called mathematical model. 

Either this model can be represented in transfer 

function form or state space form. In this section 

the complete mathematical model of the inverted 

pendulum system has been derived.  

 

The parametric representation of the inverted 

pendulum system is shown in Figure 1 and the 

parameters are presented in Table 1.  
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Table 1. Parameters of the inverted pendulum 
Variable Meaning Unit 

𝑥 Displacement of cart 𝑚 

𝜃 Pendulum angle 𝑟𝑎𝑑 

𝑀 Mass of cart 𝑘𝑔 

𝑚 Mass of pendulum 𝑘𝑔 

𝑙 Length of pendulum 𝑚 

𝑔 Acceleration of gravity 𝑚/𝑠2 

𝐽𝑝 Moment of inertia 𝑘𝑔𝑚2 

𝑑 Damping coefficient 𝑁𝑚𝑠/𝑟𝑎𝑑 

𝑏 Friction coefficient 𝑁𝑠/𝑚 

 

 
Figure 1. Representation of inverted pendulum 

 

Let 𝑁 and 𝑃 be horizontal and vertical components 

of the force as shown in Figure 1. Considering 

Figure 1, we can compute the coordinates of center 

of gravity of the mass:  

 

( )G xx x l x lsin        (1) 

 

( )G yy l lcos      (2) 

 
According to the Newton’s First Law of Motion, 

applied force on the cart equals the product of 

mass and its acceleration. 

 

F ma    (3) 

 

So, the horizontal reaction force becomes: 

 
2

2
( ( ))

d
N m x lsin

dt
     (4) 

 

Noting  𝑑2 𝑑𝑡2⁄ [sin (𝜃)] = cos(𝜃) �̈� − sin (𝜃)𝜃2̇ 

and 𝑑2 𝑑𝑡2⁄ [cos (𝜃)] = −sin (𝜃)�̈� −cos(𝜃) 𝜃2̇, 

Equation 4 can be rewritten as 

2( ( ) ( ))N m x lcos lsin        (5) 

 

The force 𝐹 applied on the cart is equal to the sum 

of the forces due to friction, acceleration, and the 

horizontal reaction 

 

F Mx bx N      (6) 

 
Substituting Equation 5 in Equation 6 we can get 

 
2( ) ( ) ( )F M m x bx ml cos ml sin          (7) 

 

To obtain the second equation of motion for the 

inverted pendulum, we need to add up the forces 

perpendicular to the pendulum. Considering Figure 

1 vertical force 𝑃 is calculated via the weight of 

the pendulum. Let 𝑦𝐺 = 𝑙𝑐𝑜𝑠(𝜃) be the 

displacement of pendulum from the pivot. Thus, 

𝑃 is given by 

 
2

2
( ( ))

d
P mg m lcos

dt
    (8) 

 

Equation 8 can be written as 

 
2( ) ( )P ml sin ml cos mg         (9) 

 

Noting that the torque equation is 

0

0

x y

x y z

l F l l

N P



 
 

  
 
   

 where the notation ⨂ 

indicates vector product 

 

( ) ( )Plsin Nlcos       (10) 

 

And also 

 

pJ d       (11) 

 

where 𝐽𝑝 is pendulum moment of inertia and 𝑑 is 

pendulum damping coefficient. Equating Equation 

10 and Equation 11, we can get 

 

( ) ( ) pPlsin Nlcos J d        (12) 
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Using the well-known trigonometric equation 

cos2(𝜃) + sin2(𝜃) = 1, Equation 12 can be 

rewritten as 

 
2( ) ( ) ( ) 0pJ ml mglsin mlxcos d         (13) 

 

Equation 7 and Equation 13 are the equations of 

motion for the inverted pendulum that describe the 

translational and rotational motion, respectively. 

From Equation 7 and Equation 13, �̈� and �̈� can 

respectively be written as 

 
2 2 2

2 2

2

( ) ( ) ( )

( ) ( ) ( )

( )

p

p

p

J ml bx m l gcos sin
x

mlcos d J ml ml sin

J ml F

 



   





  


  





 (14) 

2 2 2

( ) ( ) ( )

( ) ( ) ( )

( )

M m mglsin mlbcos x

m l cos sin M m d

mlcos F

 




   







 


  




 (15) 

where 
2 2 2 2( )( ) ( )pJ ml M m m l cos     . 

 

3. INVERTED PENDULUM WITH DC 

MOTOR 

 
In the inverted pendulum system, the cart is driven 

by a DC motor. To create a more realistic model, 

the motor characteristics should be added to the 

mathematical model of the inverted pendulum 

system. In this section the mathematical model of 

the DC motor has been analyzed and then it has 

been applied to the inverted pendulum model. 

 

The transfer function is derived for an armature-

controlled DC [17,18]. The voltage is called back 

electromotive force which is proportional to speed: 

 

( )
( ) m

b b

d t
v t K

dt


    (16) 

where 𝐾𝑏 is the back electromotive force constant 

and 𝑑𝜃𝑚(𝑡) 𝑑𝑡⁄ = 𝜔(𝑡) is the angular velocity of 

the motor. Taking the Laplace transform of 

Equation 16 gives 

 

( ) ( )b b mV s K s s    (17) 

 

The relation 𝑣𝑏(𝑡) between the armature current 

𝑖(𝑡) and the armature voltage 𝑒(𝑡) can be written 

in Laplace form as 

 

( ) ( ) ( ) ( )bRI s LsI s V s E s     (18) 

 

where 𝑅 and 𝐿 are rotor circuit resistance and rotor 

circuit inductance, respectively. The torque 

generated by the DC motor is proportional to the 

armature current: 

 

( ) ( )m tT s K I s    (19) 

 

where 𝑇𝑚 is the torque, and 𝐾𝑡 is the torque 

constant. Rearranging Equation 19 for 𝐼(𝑠) and 

substituting it and also substituting Equation 17 

into Equation 18 yields 

 

( ) ( )
( ) ( )m

b m

t

R Ls T s
K s s E s

K



   (20) 

 

The torque developed by the motor also can be 

written as follows: 

 
2( ) ( ) ( )m m mT s J s Ds s    (21) 

 

where 𝐽𝑚 is the inertia of the motor and, 𝐷 is the 

viscous damping. Substituting Equation 21 into 

Equation 20 yields 

 

2

( )

( ) ( )( ) )

m t

m b t

s K

E s R Ls J s Ds K K s




  
  (22) 

 

Equation 22 is the transfer function of the DC 

motor between input (voltage) and output (angular 

position). Noting that 𝜔(𝑠) = 𝑠𝜃(𝑠) and 

substituting 𝜔(𝑠) 𝑠⁄  instead of 𝜃(𝑠) into 

Equations. 22 and 20 yields, respectively: 
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( )

( ) ( )( ) )

t

m b t

Ks

E s R Ls J s D K K




  
  (23) 

( ) ( )
( ) ( )m

b

t

R Ls T s
K s E s

K



    (24) 

 

In order to obtain torque that is developed by the 

motor and to get rid of angular velocity, we 

substitute 𝜔(𝑠) from Equation 23 into Equation 

24, additionally writing 𝑇𝑚(𝑠) term on the left-

hand-side yields 

 

( ) 1 ( )
( )( )

t b t

m

m b t

K K K
T s E s

R Ls R Ls J s D K K

 
  

    
 (25) 

 

Equation 25 is the motor torque equation without 

angular velocity in the equation. Now let us obtain 

the force equation induced by the motor torque: 

 

1

mT F
n


    (26) 

 

where 𝜌 and 𝑛1 are radius of pulley and gear ratio, 

respectively. Substituting Equation 26 into 

Equation 25 we obtain 

 

1( )

1 ( )
( )( )

t

b t

m b t

Kn
F s

R Ls

K K
E s

R Ls J s D K K



 
  

 

 
  

   

  (27) 

 

Instead of the force 𝐹 in the inverted pendulum 

equations of motion let us use the DC motor 

armature voltage 𝐸(𝑠) as input. Up to this end, let 

us rearrange Equation 27 considering Equation 23 

and translational velocity - angular velocity 

equation 𝜔(𝑠) = −(𝑛2 𝜌⁄ )𝑠𝑥(𝑠) we obtain 

 

1 2( ) ( ) ( )b t tn n K K K
F s sx s E s

R Ls R Ls 

    
      

     
  (28) 

 

where 𝑛2 is gear ratio. 

 

For simplification substituting 𝐿 = 0 in Equation 

28 and taking the inverse Laplace transform, we 

can obtain a differential equation whose inputs are 

motor armature voltage 𝑒(𝑡) and translational 

velocity of the cart �̇�(𝑡), and output is the force 

𝐹(𝑡) applied on the cart. 

 

1 2 1( ) ( ) ( )b t tK K Kn n n
F t x t e t

R R  

    
      

    
  (29) 

 

Let the states be [𝑥1 𝑥2 𝑥3 𝑥4] = [𝑥 �̇� 𝜃 �̇�]. Using 

Equations. 14, 15, and 29, the state equations of 

the inverted pendulum which include voltage 𝑒 as 

input, can be written as follows: 

 

1 2x x    (30) 

2 1 2
2

2

2 2

3 3 3 4

2 2 2

4 3

1

( )

( ) ( ) ( )

( ) ( )( )

b t
p

p p

t

K Kn n
J ml b x

R
x

m l gcos x sin x mlcos x dx

J ml mlx sin x J ml

Kn
e

R

 











   
     

   





  


  
  




  


  (31) 

3 4x x    (32) 

3

4

1 2
3 2

2 2 2

3 3 4 4

1
3

( ) ( )

( )

( ) ( ) ( )

( )

b t

t

M m mglsin x
x

K Kn n
mlcos x b x

R

m l cos x sin x x M m dx

Kn
mlcos x e

R



 












   
    

   


  


  
  
  



  (33) 

 

where 
2 2 2 2

3( )( ) ( )pJ ml M m m l cos x     . 

 

Since the main aim of this study is to design a 

controller to stabilize the pendulum, so as to retain 
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pendulum upright position in response to changes 

in cart position, linearization of the equations 

about the vertically upward equilibrium position, 

𝜃 = 0, is needed. So, assume very small deviation 

𝜃 from equilibrium: sin(𝜃) = 𝜃, cos(𝜃) = 1 and 

𝜃2̇ = 0. 

 

Linearization of Equations 30-33 about 𝜃 = 0 can 

be carried out as follows: 

 

1 2x x    (34) 

2 1 2
2

2

2 2 2

3 4

1

( )

( )

b t
p

p

t

K Kn n
J ml b x

R
x

m l gx mldx J ml

Kn
e

R

 









   
     

   


 


  
  
  




  (35) 

3 4x x   (36) 

3

4

1 2
2

1
4

( )

( )

b t

t

M m mglx
x

K Kn n
ml b x

R

Kn
M m dx ml e

R



 










   
   
   



  
    

  


  (37) 

 

where 
2 2 2( )( )pJ ml M m m l       

 

4.  LINEAR QUADRATIC REGULATOR  
 

A linear time-invariant (LTI) and continuous time 

control system in the state space is represented as 

[19] 

 

 



x Ax Bu

y Cx

   (38) 

 

where 𝑥 and 𝑢 are state and control vectors, 

respectively. 𝐴, 𝐵, and, 𝐶 are the matrices of the 

system.  
 

Assuming that all states are measured or observed 

and also they are controllable we can determine a 

gain matrix 𝐾 for feedback. Using this matrix and 

the states the control signal is obtained by 
 

( ) ( )u t Kx t     (39) 

 

In the LQR design, in order to calculate optimal 

control signal a quadratic performance function is 

minimized: 
 

0
( )T TJ x Qx u Ru dt



     (40) 

 

where 𝑄 and 𝑅 are positive definite real symmetric 

matrices. The superscript (𝑇) points out a matrix 

transpose. 
 

Noting that the term 𝑢𝑇given in Equation 40 

represents the expenditure of the energy of control 

signals. The weighting matrices 𝑄 and 𝑅 play a 

central role upon making a decision on which one 

of the two terms in Equation 40 is more important. 

In order that the control signal 𝑢(𝑡) = −𝐾𝑥(𝑡) 

makes the dynamic system given in Equation 38 

optimal for any initial state 𝑥(0) we can determine 

the matrix 𝐾 minimizing the performance index 

given in Equation 40) [19]. 

 
1 TK R B P    (41) 

 
1 0T TA P PA PBR B P Q      (42) 

 

5. ARTIFICIAL BEE COLONY 

ALGORITHM  
 

The Artificial Bee Colony (ABC) algorithm is a 

swarm intelligence method to optimize numerical 

functions [14]. The algorithm uses finding food 

source ability of honey bee colonies as a model to 

solve optimization problems [14,15]. In the ABC 

algorithm, the colony contains three groups of 
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bees: employed, onlooker, and scout. An employed 

bee goes to a food source to harvest the sweet 

secretion of plant called nectar and provides 

knowledge about the food source. An onlooker bee 

gets the knowledge about food sources from 

employed bees and chooses a food source. A scout 

bee seeks for novel food sources randomly. Every 

food source corresponds to only one employed bee 

in the colony. So the number of the employed bees 

is equal to the food sources around the hive. Also 

the number of the employed bees is equal to the 

number of the onlooker bees. If an employed bee 

abandons its food source, it becomes a scout bee 

[20]. 

 

At the beginning of the process, bees select a set of 

food source positions randomly and determine the 

nectar amounts of the selected food sources in the 

ABC algorithm. Then, these bees return the hive 

and share the information with the other bees, 

waiting on the dance area. After sharing the 

information employed bees return to the food 

source which selected by themselves. If an 

employed bee consumes the food source, it starts 

to look for another source in the neighbourhood of 

the previous one. Then, an onlooker bee chooses a 

food source depending on the knowledge provided 

by the employed bees. This division of labour 

between onlooker bees and employed bees provide 

the exploitation of local sources and scout bees 

provide the exploration of new sources [20]. 

 

The position of a food source is a possible solution 

of the optimization problem in the ABC algorithm. 

The quality of the solution depends on the nectar 

amount of the associated food source. Initial 

population of food source positions (SN) is created 

randomly by the ABC algorithm at the first step. 

Each food source as a solution 𝑥𝑖(𝑖 = 1,2, … , 𝑆𝑁) 

is a 𝐷𝑜𝑝 -dimensional vector where 𝐷𝑜𝑝 denotes 

the number of the parameters in the optimization 

problem [20]. 

 

After the initialization of the ABC algorithm, all 

bees search every food source until a 

predetermined number of iterations 

Cycle=1,2,…,MCN, where MCN represents the 

maximum cycle number. An employed bee 

generates some changes on the food source for 

encountering a new food source and checks the 

nectar amount of new food source. If the new 

nectar amount is more abundant than the previous 

one, the position of new sources is replaced with 

the old position. Otherwise, the bee keeps the 

position of the previous food source. After all 

employed bees finish their search process, the 

nectar information and positions of the food 

sources are shared with the onlooker bees. An 

onlooker bee evaluates the information of nectar 

amounts of food sources from employed bees then 

makes a choice for a food source by using a 

selection probability with respect to that evaluated 

information [20]. 

 

An onlooker bee selects a food source depending 

on the probability value of that food source, 𝑝𝑖 , 

determined by the Equation 43) as follows [20]: 

 

1

i

i SN

i

i

fit
p

f it





   (43) 

 

where 𝑓𝑖𝑡𝑖 denotes the fitness value of the solution 

𝑖 and it is proportional to the nectar amount of the 

food source in position 𝑖. 
 

The ABC algorithm utilizes the Equation 44 to 

create a new food position from the old position in 

the memory [20]. 

 

( )ij ij ij ij kjv x x x      (44) 

 

where 𝑗 ∈ 1,2, … , 𝐷𝑜𝑝 and 𝑘 ∈ 1,2, … , 𝑆𝑁 are 

randomly selected indexes. Despite it is 

determined randomly, the index 𝑘 should be 

different from 𝑖. 𝜙𝑖𝑗 is determined in the range of 

[−1,1] randomly, and controls the production of a 

food source position around the neighbourhood of 

𝑥𝑖𝑗 . As seen from Equation 44, as long as the 

difference between the parameters 𝑥𝑖𝑗  and 𝑥𝑘𝑗  

decreases, the perturbation on the position 𝑥𝑖𝑗  
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decreases. Hence, as the search comes close to 

optimum solution in the search space, the step 

length is adaptively reduced. 

 

The food source left by the employed bees is 

replaced with a new food source by scout bees. In 

the ABC algorithm, this is performed by producing 

a position randomly and changing it with the 

previous one. If a position cannot become better 

further during a predetermined number of cycles 

which is called 𝑙𝑖𝑚𝑖𝑡, then that food source is 

thought to be abandoned. After the abandonment 

of a food source, scout bees discover a new food 

source to replace it. This process can be defined as 

follows [20]: 

 

[0,1]( )ij jmin jmax jminx x rand x x     (45) 

 

where j∈1,2,…,Dop and i∈1,2,…,SN. 

 

If the nectar amount of new source is equal or 

better than the nectar amount of the old source, the 

new source position is changed with the old one or 

else the old food position is kept in the memory. 

So, a greedy selection mechanism is engaged as 

the selection operation between the candidate food 

source and the old one [20]. 

 

6.  LQR CONTROLLER DESIGN 

USING THE ABC ALGORITHM  
 

Determination of the matrices 𝑄 and 𝑅 of the LQR 

weights considerably affects the performance of 

the controlled system. In a general manner 

determining the weights is carried out by trial and 

error as mentioned before. 

 

In this study the ABC algorithm is employed to 

select 𝑄 and 𝑅 to design an LQR controller for 

considering both pendulum’s angle and cart’s 

position. In this sections we shall explain how to 

determine the matrices 𝑄 and 𝑅 of the LQR using 

the ABC algorithm in order to take time-domain 

specifications into account. 

 

Main design parameters of the LQR are weighting 

matrices. Computing these weighting matrices to 

minimize a performance index by the ABC 

algorithm is a minimization problem. This problem 

requires to be resolved in such a way that output of 

the system attains the desired level in the shortest 

time as far as possible without a high overshoot. 

Hence, the objective of this design is to decrease 

the settling time 𝑡(𝑠) of the output of the system 

(the cart position) with no overshoot (𝑜𝑠) or with 

minimum overshoot and also minimize steady-

state error (𝑒𝑠𝑠). The objective weighting method 

where multiple objective functions are united in 

one objective function 𝑓𝑠𝑢𝑚 can be employed for 

multiple objective optimization [21]. The objective 

function 𝑓𝑠𝑢𝑚 can be written as 

 

1 2 3sum s ssf K t K os K e     (46) 

 

where 𝐾1, 𝐾2 and 𝐾3 are the coefficients of the 

fitness functions and their values are selected as 

1.0 by trial and error in this study. 
 

In addition to time-domain specifications included 

in the objective function given in Equation 46, 

important physical constraints of the controlled 

system should be added to the objective function. 

The inverted pendulum system has two physical 

constraints. The first one is the bound of the 

control signal which must be in the range of -2.5V 

and +2.5V and the second one is the cart position 

which is physically bounded by the rail length 

which is 1m. Since, it is assumed that the initial 

cart position is in the middle of the rail, position of 

the cart can be limited to |𝑥| ≤ 0.5 [4]. 

 

 
Figure 2. Block diagram of the ABC training 
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The cart position constraint is already incorporated 

into the objective function 𝑓𝑠𝑢𝑚 which is given in 

Equation 46, through the overshoot, on the other 

hand, to incorporate the control signal 𝑢 into the 

ABC algorithm fitness function, a penalty method 

is used. The objective function given in Equation 

46 can be evaluated with this method in the 

following way [21]: 

 

, if  |u| 2.5
evaluate  ( )

, otherwise

sum

sum

f
f x

f








  (47) 

 
where 𝜓 denotes a penalty coefficient for violation 

of the control signal bound. The penalty coefficient 

𝜓 is 0 if   |𝑢| ≤ 2.5 otherwise it is a positive 

constant. In this study 𝜓 is selected as 5 by trial 

and error. 

 

Block diagram of the ABC training is shown in 

Figure 2. The reference input is selected as 𝑟 =

0.1. A pre-compensation scale factor 𝑁 which 

addresses the steady state error, is added to the 

reference input as shown in Figure 2. Pre-

compensation scale factor 𝑁 can be defined as 

follows [22]: 

 

 
1

1( )nN C A BK B


     (48) 

 

where 𝐶𝑛 = [1 0 0 0] to ensure that the reference 

input will be only applied to the first state which is 

the position of the cart. 

 

As mentioned in the previous sections, 𝑄 and 𝑅 

weighting matrices must be real symmetric and 

positive definite matrices to ensure stability. Also 

𝑄 and 𝑅 matrices must be non-negative definite to 

ensure 𝑥𝑇𝑄𝑥 and 𝑢𝑇𝑅𝑢 non-negative for all 

possible 𝑥 and 𝑢 in Equation 40. The easiest way 

to ensure that the matrices are non-negative 

definite is picking the weighting matrices to be 

diagonal with all diagonal elements positive or 

zero [23]. Selecting diagonal weighting matrices 

causes the interaction of the components of the 

states and control to decrease. However, this is not 

a unique way to guarantee the weighting matrices 

to be positive definite. There exists another way in 

matrix theory to make sure that a matrix 𝑄 is 

positive definite. Noting the algebraic principle; a 

real symmetric matrix 𝑄 is positive definite if there 

exists a non-singular matrix �̅� such that [24] 

 
TQ QQ    (49) 

 
Since 𝑄 matrix is defined in the form 𝑄 = �̅��̅�𝑇 

and 𝑅 matrix 𝑅 = �̅��̅�𝑇, 𝑄 and 𝑅 would be positive 

definite in any case. In this way we have more 

degree of freedom to select elements of matrices 

than diagonal matrices. Because there is not a 

direct relation with the matrices’ elements and 

performance specifications, choosing weighting 

matrices is not simple. In order to meet these 

constraints the ABC algorithm was employed to 

select the best 𝑄 and 𝑅 matrices that minimize the 

Equation 46 in view of the time-domain 

performance specifications. 

 

The main parameters of the ABC algorithm, 

colony size and maximum number of cycles are set 

as SN=20 and MCN=100 by trial and error. To 

create two matrices which �̅� is 4 × 4 and �̅� is 

1 × 1 non-singular real symmetric matrices, the 

number of parameters of the problem to be 

optimized is defined as 11 and they will be 

denoted as X1,X2,…,X11. Also the lower and upper 

bounds of the parameters are set 0.1 and 20, 

respectively, by trial and error. �̅� and �̅� matrices 

are defined as follows 

 

11 12 13 14

21 22 23 24

31 32 32 34

41 42 43 44

q q q q

q q q q
Q

q q q q

q q q q

 
 
 
 
 
 

  (50) 

 11R r    (51) 

 

where q̅
11

=X1,  q̅12=q̅21=X2, q̅13=q̅31=X3, 

q̅14=q̅41=X4, q̅22=X5, q̅23=q̅32=X6, 

 q̅24=q̅42=X7,  q̅33=X8, q̅34=q̅43=X9, q̅44=X10 

and r̅11=X11. In a consequence, we have 11 
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parameters (X1,X2,…,X11) to be encoded in the 

ABC algorithm as a solution vector. Hence, the 

number of optimization parameters Dop=11.  

 

In the ABC algorithm training, the linear model of 

the inverted pendulum with DC motor given in 

Equations 34-37 is used. Parameters of the DC 

motor and parameters of the inverted pendulum are 

presented in Table 2 and Table 3, respectively. 

 

Since the state-space representation of a 

continuous time LTI control system can be written 

as in Equation 38, the matrices 𝐴, 𝐵 and 𝐶 can be 

defined as follows 

 

 

0 1.0000 0 0

0 9.0898 0.6893 0.0424
,

0 0 0 1.0000

0 18.9542 21.8933 1.3477

0

5.0787
,   1 0 0 0

0

10.5901

A

B C

 
 

 
 
 
 

  

 
 
  
 
 
 

  (52) 

 

Table 2. Parameters of the DC motor [4] 

Parameter Value 

ρ(m) 0.0314 

R(Ω) 2.5 

𝐾𝑡 0.05 

𝐾𝑏 0.05 

𝑛1 18.84 

𝑛2 0.986 

 

Table 3. Parameters of the inverted pendulum [4] 

Parameter Unit Value 

M kg 2.4 

m kg 0.23 

l m 0.36 

g m/s2 9.81 

Jp kgm2 0.0099 

d Nms/rad 0.05 

b Ns/m 0.00005 

 

The linearized state space representation of 

inverted pendulum is used to calculate 𝐾 and 𝑁. 

Also the linear model of the pendulum is used to 

simulate the inverted pendulum and calculate the 

objective function given in Equation 46. In every 

cycle of the ABC algorithm, new 𝑄 and 𝑅 matrices 

are updated and a new feedback gain matrix 𝐾 is 

obtained in the following way: 

 

 Solving the algebraic Ricatti equation given in 

Equation 42 for 𝑃 where 𝐴 and 𝐵 are given 

above. 𝑄 and 𝑅 are updated by the ABC 

algorithm. 

 Finding the gain matrix using Equation 41. 

 

Also 𝑁 is obtained from Equation 48. After the 

calculation of 𝐾 and 𝑁, results are simulated by 

using the linear inverted pendulum model as 

shown in Figure 2 and the objective function given 

in Equation 47 is calculated based on the 

simulation results. The weighting matrices which 

have provided the best fitness are memorised. The 

weighting matrices determined by the ABC 

algorithm are 

 

 

625.8682 2.6121 2.6121 23.1362

2.6121 0.0400 0.0400 0.1221

2.6121 0.0400 0.0400 0.1221

23.1362 0.1221 0.1221 0.8782

13.8236

Q

R

 
 
 
 
 
 



  (53) 

 

7. COMPARISON RESULTS 
 

After the LQR training which is performed to 

determine the matrices 𝑄 and 𝑅 using the ABC 

algorithm is achieved, the performance of the 

proposed method is compared with a method 

proposed by Ghosh et al. [10]. Block diagram of 

the LQR controller of the nonlinear inverted 

pendulum model with DC motor shown in Figure 

3 is employed for the simulation test. State 

equations described in Equations 30 – 33 are used 

to simulate the nonlinear system. These equations 

are solved using the fourth-order Runge-Kutta 

method in a numerical manner where the step size 

h=0.001. 
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To obtain feedback gain matrix 𝐾, the algebraic 

Ricatti equation given in Equation 42 is solved for 

𝑃 where 𝐴 and 𝐵  are given in Equation 52, 𝑄 and 

𝑅 are given in Equation 53. Then by using the 

Equation 41, the feedback gain matrix is obtained 

as 

 

[ 6.7287 7.6433 24.6789 4.7350]K      (54) 

Using Equation 48 and based on 𝐾 and matrices 𝐴, 

𝐵 and 𝐶, scale factor can be determined as 

 

6.7287N      (55) 

 

 
Figure 3. Block diagram of the LQR controller for 

the nonlinear inverted pendulum with 

DC motor 

 

The goal of this simulation is to show the changes 

on position of the cart 𝑥, pendulum angle 𝜃 and 

control signal 𝑢 based on initial conditions of 

[ 𝑥0  �̇�0  𝜃  𝜃0̇] and reference signal 𝑟. Comparing 

the proposed method with another method will 

provide a clearer view about the performance. 

Some of the methods proposed in the literature are 

mentioned before. It is not required to compare the 

proposed method with one trained by another 

swarm optimization algorithm since the main goal 

of this study is to show advantage of the ABC 

algorithm in comparison with any method based 

on trial and error instead of its training 

performance. The method proposed by Ghosh et 

al. [10] is used for comparison purposes in this 

study. According to this method Q and R matrices 

can be defined as follows [10]: 

 

 11 22 33 44 11, , , ,Q diag q q q q R r    (56) 

 

where q
11

=500q, q
22

=20q, q
33

=20q, q
44

=q and 

r11=10n. By trial and error and with the choices 

q=4 and n=2, 𝑄 and 𝑅 matrices are obtained as 

follows: Q=diag{2000,80,80,4} and R=[100]. 

 

To obtain feedback gain matrix for this method, 

the algebraic Ricatti equation given in Equation 42 

is solved for 𝑃  where 𝐴 and 𝐵 are given in 

Equation 52, 𝑄 and 𝑅 are given above. Then using 

the Equation 41, the feedback gain matrix is 

obtained as 

 

[ 4.4721 6.4778 21.7808 4.1618]cK      (57) 

 

Using Equation 48 and based on 𝐾𝑐 and matrices 

𝐴, 𝐵 and 𝐶, scale factor can be determined as 

 

4.4721cN      (58) 

 

 
(a) 

 
(b) 

 
(c) 

Figure 4. Comparison results of position (a), 

angle (b) and control signal (c) for 

𝑟 = 0.1 and initial conditions 

[x0 x0̇ θ0 θ0̇]=[0 0 0.1 0] 
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The proposed method and the method proposed in 

[10] are simulated in the simulation setup which is 

shown in Figure 3. The only differences between 

these simulations are the feedback gain matrix 𝐾 

and the scale factor 𝑁. For the proposed method 

the feedback matrix K= [-6.7287-7.6433 24.6789 

4.7350] and N̅=-6.7287 are defined in Equation 54 

and Equation 55, respectively, and also for the 

method proposed in [10] the feedback matrix  

Kc=[-4.4721-6.4778 21.7808 4.1618] and 

N̅=-4.4721 are defined in Equation 57 and 

Equation 58, respectively. For both methods 

performance results are presented in Table 4 where 

initial conditions  [x0 ẋ0  θ0 θ0̇]=[0 0 0.1 0] and 

reference signal r = 0.1. Also simulation time and 

step size are defined as T = 3 sec and h = 0.001, 

respectively. Cart position, pendulum angle and 

control signal are plotted in Figure 4(a-c), 

respectively. The proposed method was indicated 

by solid line and the other method was indicated 

by dotted line in these figures. The proposed 

method is faster about 0.8sec than the other 

method to bring the cart to desired position as 

shown in Figure 4(a). The cart reached the desired 

position in about 2 sec with the proposed method 

while it took 2.8 sec in the other method. 

Pendulum’s swinging bound for the proposed 

method is a bit larger than the other method as 

shown in Figure 4(b), despite the proposed method 

managed to keep the pendulum upright position in 

about 2.2 sec while it took about 2.7 sec for the 

other method. Overall, the simulation results have 

shown that the proposed method is more efficient 

than the method proposed in [10] to select 

weighting matrices for LQR controller design.  

 

Table 4. Comparison results 
 Proposed Method Method Proposed in [10] 

ts(sec) 2.0419 2.8010 

os(%) 0 0 

ess 0.0001 0.0014 

fsum 2.0420 2.8024 

 

8. EXPERIMENTAL RESULTS 
 

After the comparison, four different experiments 

are carried out to investigate the performance of 

the weighting matrices in a real system.  

 

Experiments have performed on Feedback's 33-

200 digital pendulum mechanical unit which 

consists of a cart driven inverted pendulum and a 

belt with DC motor on adjustable feet. The PC 

with PCI 1711 Advantech card serves as the main 

control unit. The control signal, which is a voltage 

between –2.5 V and 2.5 V, is transferred to the 

Digital Pendulum Controller (DPC), which drives 

the DC motor. The cart position and the pendulum 

angle encoder signals are transferred to the (DPC) 

and then to the PC.  

 

 
(a) 

 
(b) 

  
(c) 

Figure 5. Experimental results of position (a), 

angle (b) and control signal (c) for r=0.1 

and initial conditions 

[x0 x0̇ θ0 θ0̇]=[0 0 0.1 0] 

 

The goals of these experimental tests are to show 

the changes on position of the cart 𝑥, pendulum 

angle 𝜃 and control signal 𝑢 based on initial 

conditions of [𝑥0  𝑥0̇  𝜃0  𝜃0̇] and reference signal 𝑟 

on the experimental setup. 
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In the first test, for reference signal 𝑟 = 0.1 and 

initial conditions [x0  x0̇  θ0  θ0̇]=[0  0  0.1  0], the 

cart position (𝑥) , pendulum angle (𝜃) and control 

signal (𝑢) are plotted and shown in Figure 5(a-c), 

respectively. In the first test, the controller 

managed to bring the cart from the initial position 

0𝑚 to the desired position in about 2 sec while 

bringing the pendulum angle from 0.1 rad to         

0 rad as shown in Figure 5(a). Also the pendulum 

angle reached to the desired position from the 

initial position in about 2 sec as shown in Figure 

5(b). The control signal started from 2.5 V and 

during the test it was in the range of −2.5 V and 

+2.5 V so it obeys physical restriction as shown in 

Figure 5(c). 

 

 
 

 
 

 
 

Figure 6. Experimental results of position (a), 

angle (b) and control signal (c) for 

r = 0.1 and initial conditions 

[x0 x0̇ θ0 θ0̇]=[0 0 0.2 0] 

 

In the second test, for reference signal r = 0.1 and 

initial conditions [x0  x0̇  θ0  θ0̇]=[0  0  0.2  0], the 

cart position (𝑥), pendulum angle (𝜃) and control 

signal (𝑢) are plotted and shown in Figure 6(a-c), 

respectively. In the second test, the controller 

managed to bring the cart from the initial position 

0 m to the desired position in about 2 sec as shown 

in Figure 6(a). The pendulum reached to the 

upright position from the initial position in about 

0.4 sec as shown in Figure 6(b). The control signal 

started from 2.5 V and during the test it was in the 

range of −2.5 V and +2.5 V as shown in Figure 

6(c). 
 

 
 

 
 

 
 

Figure 7. Experimental results of position (a), 

angle (b) and control signal (c) for 

r = 0.2 and initial conditions 

[x0 x0̇ θ0 θ0̇]=[0 0 0.1 0] 
 

In the third test, for reference signal r = 0.2 and 

initial conditions [x0  x0̇  θ0  θ0̇]=[0  0  0.1  0], the 

cart position (𝑥), pendulum angle (𝜃) and control 

(a) 

(b) 

(c) 

(a) 

(b) 

(c) 
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signal (𝑢) are plotted and shown in Figure 7(a-c), 

respectively. In the third test, the controller 

managed to bring the cart from the initial position 

0 m to the desired position in about 2.4 sec while 

bringing the pendulum angle from 0.1 rad to 0 rad 

as shown in Figure 7(a). Also the pendulum angle 

reached to the desired position from the initial 

position in about 2 sec as shown in Figure 7(b). 

The control signal started from 2.5 V and during 

the test it was in the range of −2.5 V and +2.5 V 

as shown in Figure 7(c). 

 

 
(a) 

 
(b) 

 
(c)  

Figure 8. Experimental results of position (a), 

angle (b) and control signal (c) for 

r = 0.2 and initial conditions 

[x0 x0̇ θ0 θ0̇]=[0 0 0.2 0] 

 

In the fourth test, for reference signal r = 0.2 and 

initial conditions [x0  x0̇  θ0  θ0̇]=[0  0  0.2  0], the 

cart position (𝑥), pendulum angle (𝜃) and control 

signal (𝑢) are plotted and shown in Figure 8(a-c), 

respectively. In the fourth test, the controller 

managed to bring the cart from the initial position 

0 m to the desired position in about 2.3 sec as 

shown in Figure 8(a). Also the pendulum angle 

reached to the desired position from the initial 

position in about 2.2 sec as shown in Figure 8(b). 

The control signal started from 2.5 V and during 

the test it was in the range of −2.5 V and +2.5 V 

as shown in Figure 8(c). 

 

9. CONCLUSION 
 

The current study has presented a new ABC 

algorithm based strategy that focuses on efficiency 

of LQR controller design process. The ABC 

algorithm has been employed to determine LQR 

controller weighting matrices and an LQR 

controller has been designed for an inverted 

pendulum system with DC motor. The designed 

LQR controller was tested with different reference 

signals and different initial conditions. It is well 

known that the ABC algorithm has good 

performances in solving numerical optimization 

problems. Thus, the effectiveness of the LQR 

controller design using the ABC algorithm was 

researched and a satisfactory performance was 

obtained. The comparison results have shown that 

using the ABC algorithm is more effective and 

feasible to select weighting matrices for LQR 

controller design than the method proposed by 

Ghosh et al. [10]. Also it has shown that the 

proposed method can optimize multiple time 

domain control system specifications such as 

settling time, overshoot and steady state error, 

simultaneously. 

 

There may exist some varying parameters, 

disturbances, and uncertainties in the real-life 

plants. Therefore, the mathematical model of the 

system is very important. Experimental results 

have shown that the inverted pendulum model with 

DC motor used for controller design is quite 

realistic. Also the experimental results have shown 

that the proposed method can be used in real-life 

plants efficiently. The proposed method is flexible 
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and applicable in a wide range of optimization 

problems. Hence, it can be regarded as a general 

controller design method that can be applied to a 

wide class of control problems.  
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