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Abstract 
 
Size-dependent axial vibration of a nanorod embedded in elastic medium is studied for the first time in 

this paper within the framework of the nonlocal strain gradient theory. The governing equation of motion 

of the problem is derived using the equilibrium condition and it is solved analytically to obtain the exact 

expression of vibration frequency for a fixed-fixed nanorod. The influences of the nonlocal parameter, the 

material length scale parameter and the elastic medium coefficient on the free vibration frequencies are 

investigated in detail. The results show that free vibration frequencies are significantly dependent on the 

size effects, and the size effects gain more importance at higher modes. Therefore, the classical 

continuum theory is inappropriate to investigate the mechanical behavior of nanostructures. 
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Yerel Olmayan Şekil Değiştirme Gradyanı Teorisi Kullanılarak Elastik Zemine 

Gömülü Nano Çubuğun Eksenel Titreşim Analizi 
 

Özet 

 
Elastik zemine gömülü bir nano çubuğun boyut etkisine bağlı eksenel titreşimi yerel olmayan şekil 

değiştirme gradyanı teorisi çerçevesinde ilk olarak bu çalışmada incelenmiştir. Probleme ait yönetici 

hareket denklemi denge şartı kullanılarak çıkarılmış, iki ucu ankastre nano çubuğun serbest titreşim 

frekansına ait kesin ifadeyi elde etmek için yönetici denklem analitik olarak çözülmüştür. Yerel olmayan 

parametre, malzeme uzunluk ölçek parametresi ve elastik zemin parametresinin serbest titreşim 

frekansları üzerindeki etkisi detaylı olarak incelenmiştir. Elde edilen sayısal sonuçlar göstermiştir ki; 

serbest titreşim frekansları boyut etkisine önemli derecede bağlıdır ve boyut etkisi yüksek modlarda daha 

çok önem kazanmaktadır. Bu nedenlerden dolayı, klasik sürekli ortamlar mekaniği nano ölçekteki 

yapıların analizi için uygun değildir. 

 
Anahtar Kelimeler: Nanoteknoloji, Titreşim, Yerel olmayan elastisite teorisi, Şekil değiştirme gradyanı 

teorisi, Nano çubuk 
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1. INTRODUCTION 
 

With the advance of the technology, due to their 

novel properties nanostructures such as carbon 

nanotubes, nanorods and nanowires has been 

extensively used in various engineering 

applications, especially in micro and 

nanoelectromechanical system (MEMs and 

NEMs). For this reason the determination of the 

physical and mechanical behavior of 

nanostructures has become very important issue 

nowadays. The research method of nanostructures 

can be categorized into two groups. The first 

method group is based on the atomistic methods, 

i.e., molecular dynamic (MD) simulation. 

However, since the atomistic methods take more 

time and then they are computationally expensive, 

these methods are not always useful for the 

analysis of nanostructures that consist of a large 

number of atoms and molecules. The second 

method group based on the continuum mechanics 

can be good alternative in order to overcome this 

problem. On the other hand, experimental studies 

show that the size effect plays very crucial role on 

the mechanical behavior of nanostructures. Thus, 

the classical continuum theory, which is 

independent of the size effect, is insufficient in 

order to predict the behavior of the nanoscale 

structures. At this point, several size-dependent 

continuum theories, such as the nonlocal elasticity 

theory [1], the strain gradient theory [2], the 

modified couple stress theory [3] and the 

micropolar theory [4] were proposed. In the 

nonlocal elasticity theory proposed by Eringen [1], 

to account for scale effect it is assumed that the 

stress at a point is a function of strains at all points 

in the continuum. A large number of studies 

related with static [5,6], buckling [7-12] and 

vibration [13-20] analysis of nanostructures using 

Eringen’s nonlocal elasticity theory can be found 

in literature.  

 

Although nonlocal elasticity theory is widely used 

in the analysis of nanostructures, the main 

drawback of this theory is that it accounts for only 

softening effect whereas the stiffness 

enhancement, which is observed in experimental 

analysis of micro and nanostructures, is not 

included. In this context, the strain gradient theory 

and the modified couple stress theory are capable 

of incorporating the stiffness enhancement [21-30]. 

As seen from the previous discussion, the nonlocal 

elasticity theory and the strain gradient theory 

handle the different aspects of size-dependent 

mechanical behavior of micro and nanostructures. 

Therefore, there is a strong need to combine both 

size-dependent theories to realize the real behavior 

of micro and nanostructures. By connecting the 

nonlocal elasticity and the strain gradient theory, 

Challamel [31] proposed a generalized hybrid 

nonlocal law to investigate static bending, 

buckling, and free vibration of beams using 

different beam theories. Recently, Lim et al. [32] 

have presented nonlocal strain gradient theory that 

combine the nonlocal elasticity and the strain 

gradient theory for the wave propagation in Euler-

Bernoulli and Timoshenko beams. Li and Hu [33] 

have investigated the post-buckling behavior of 

Euler-Bernoulli beam based on the nonlocal strain 

gradient theory. 

 

The above literature survey reveals that the 

number of studies related to mechanical behavior 

of micro and nanostructures using the nonlocal 

strain gradient theory are very limited. To the best 

of author’s knowledge, size-dependent axial 

vibration of nanorods embedded in elastic medium 

seems to be nonexistent.  

 

The primary purpose of the current work is to fill 

this gap. In the present paper, free vibration 

characteristics of a nanorod embedded in elastic 

medium are examined in the context of the 

nonlocal strain gradient theory. The exact 

frequency expression is derived for a fixed-fixed 

nanorod. The effects of the nonlocal parameter, the 

material length scale parameter and the elastic 

medium coefficient on the free vibration 

frequencies are investigated in detail. 

 

2. NONLOCAL STRAIN GRADIENT 

ROD MODEL 
 

Based on the nonlocal strain gradient theory 

proposed by Lim et al. [32], the generalized 

nonlocal strain gradient constitutive relation for a 

one-dimensional structure can be given as; 
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where 2 2 2/ x     is the one-dimensional 

differential operator, 
xxt  is the total axial stress, 

xx  is the axial strain, 
0e a  and 

1e a  are the 

nonlocal parameters, and 
ml  is the material length 

scale parameter to determine the significance of 

higher-order strain gradient field. It is seen that Eq. 

(1) accounts for not only the nonlocal elastic stress 

field but also the strain gradient stress field. 

According to the assumption made in Lim et al. 

[32], when one considers that 
0 1e e e  , the 

generalized nonlocal strain gradient constitutive 

relation in Eq. (1) can be simplified as 

 

 
2 2 2 21 1xx m xxea t E l          

       (2) 

 

where E  is the elasticity modulus. It can be seen 

from Eq. (1) that when the material length scale is 

taken as 0ml  , the Eringen’s nonlocal stress 

model [1] is achieved as follows 

 

 
2 21 xx xxea t E   

 
         (3) 

 

On the other hand, by assuming 0ea   the pure 

strain gradient model of Aifantis [2] is obtained as 

 
2 21xx m xxt E l               (4) 

 

For a one-dimensional structure, the nonlocal 

behavior can be neglected in the thickness 

direction. Thus, for a homogeneous isotropic rod 

with the length of L , the nonlocal strain gradient 

constitutive relation takes the following form 
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Using Hamilton’s principle the equation of motion 

for the axially vibrating rod embedded in an elastic 

medium can be obtained as  
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where  ,f x t  is the distributed axial load along 

x  axis, 
uk  is the coefficient of the elastic 

medium,   is the mass density of the rod, A  is 

the area of the cross-section,  ,u x t  is the axial 

displacement of the rod, t  denotes the time, and 

N  is the axial normal force which is defined by, 

 

dxx
A

N t A            (7) 

 

The axial strain 
xx  for a rod is given by, 

 

xx

u

x



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          (8) 

 

From the Eqs. (5), (7) and (8), the axial force for 

the nonlocal strain gradient model can be obtained 

as, 
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The explicit expression of the nonlocal axial 

normal force can be obtained by substituting Eq. 

(6) into Eq. (9) as, 
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By using Eq. (6) and (10), the equation of the 

motion for the nonlocal strain gradient rod model 

in terms of the axial displacement can be obtained 

as follows, 
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It is clear that the equation of motion in (11) is the 

fourth order partial differential equation, and it 

requires four boundary conditions, two of which 

are the classical and the others are the non-

classical boundary conditions. The related 

boundary conditions are given as [31], 
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For a fixed-fixed nanorod the following boundary 

conditions should be satisfied at both edges [21], 

 

   0 0u u L          (14) 
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In the light of the above boundary conditions, the 

axial displacement of the nanorod can be expanded 

in the modal form as, 
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where  nq t  are the unknown time-dependent 

generalized coordinates and  n x  are the mode 

shapes of a fixed-fixed rod which are expresses as, 
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For free vibration analysis, if the external load is 

set to zero ( 0f  ), and the time-dependent 

generalized coordinates are assumed to be as 

  sinn nq t q t  in which   is the natural 

frequency of the nanorod, and Eq. (16) is 

substituted into Eq. (11), one obtains the following 

relation after some mathematical amendments, 
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For the non-trivial solution the expression in the 

square bracket must be zero. This condition yields 

the free vibration frequencies of the nanorod. After 

some mathematical processes, the free vibration 

frequency of the fixed-fixed nanorod is found as, 
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         (19) 

 

It should be noted that the lowest frequency (
1 ) 

is the fundamental vibration frequency of the 

nanorod. 

 

3. NUMERICAL RESULTS 
 

In the numerical results, free vibration of the fixed-

fixed nanorod based on the nonlocal strain gradient 

theory is investigated. Some numerical examples 

are presented to examine the effects of the 

nonlocal parameter and the material length scale 

parameter on the free vibration frequencies. In 

order to obtain the more general results, the 

following dimensionless quantities can be defined 

 

Dimensionless nonlocal parameter: 
 

ea

L
          (20) 
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Dimensionless material length scale parameter: 

 

ml

L
           (21) 

 

Dimensionless elastic medium parameter: 
2

u

U

k L
K
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         (22) 

 

Dimensionless frequency parameter: 
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In Tables 1-3, the first three dimensionless free 

vibration frequencies of the nanorod are presented 

for various values of the dimensionless nonlocal 

parameter ( ) and the dimensionless elastic 

medium parameter (
UK ).  

 

Table 1. The first vibration frequency for various 

values of the nonlocal and the elastic 

medium parameters and 0   
 

UK  
  

0 0,25 0,5 1 

0 3,1415 2,4706 1,6871 0,9528 

1 3,2969 2,6653 1,9612 1,3813 

5 3,8561 3,3322 2,8011 2,4306 

10 4,4575 4,0130 3,5841 3,3027 

 

Table 2. The second vibration frequency for 

various values of the nonlocal and the 

elastic medium parameters and 0   
 

UK  
  

0 0.25 0.5 1 

0 6,2831 3,3742 1,9057 0,9875 

1 6,3622 3,5193 2,1522 1,4054 

5 6,6692 4,0479 2,9380 2,4444 

10 7,0340 4,6244 3,6921 3,3128 

 

In Tables 1-3, the dimensionless material length 

scale parameter is taken as 0  . It can be seen 

from Tables 1-3 that an increase in the 

dimensionless nonlocal parameter ( ) leads to a 

decrement in the dimensionless vibration 

frequencies. This is due to the softening effect 

caused by the inclusion of nonlocal parameter. 

 

Table 3. The third vibration frequency for various 

values of the nonlocal and the elastic 

medium parameters and 0   
 

UK  
  

0 0,25 0,5 1 

0 9,4247 3,6821 1,9564 0,9944 

1 9,4776 3,8154 2,1971 1,4102 

5 9,6864 4,3078 2,9711 2,4472 

10 9,9411 4,8536 3,7185 3,3149 

 

The most important observation from Tables 1-3 is 

that the effect of the dimensionless nonlocal 

parameter on the frequencies increases as the mode 

number increases. In other words, the third 

frequency (
3 ) is the most affected by the 

nonlocal parameter. For instance, regardless of 

UK  values the first and the third frequencies are 

1 3.1415   and 
3 9.4247  , respectively when 

the nonlocal parameter is zero ( 0  ). However, 

if the nonlocal parameter is unity ( 1  ), the 

frequencies are 
1 0.9528   and 

3 0.9944  , 

respectively.  

 

Table 4 The first vibration frequency for various 

values of the material length scale and 

the elastic medium parameters and 

0   
 

UK  
  

0 0,25 0,5 1 

0 3,1415 3,9947 5,8499 10,357 

1 3,2969 4,1179 5,9348 10,405 

5 3,8561 4,5779 6,2627 10,596 

10 4,4575 5,0948 6,6499 10,829 

 

Tables 4-6 present the first three dimensionless 

frequency parameters for different values of the 

dimensionless material length scale parameter (β) 

and elastic medium parameter ( UK ). Tables 4-6 
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reveal that in contrast to the nonlocal parameter, 

the material length scale parameter has an 

increasing effect on the frequencies. This behavior 

is the typical characteristics of the strain gradient 

theory (also couple stress theory). The inclusion of 

the material length scale parameter makes the rod 

stiffer, and then the stiffer rod yields the larger 

frequencies.  
 

Table 5. The second vibration frequency for 

various values of the material length 

scale and the elastic medium parameters 

and 0   
 

UK  
  

0 0,25 0,5 1 

0 6,2831 11,699 20,715 39,975 

1 6,3622 11,742 20,739 39,987 

5 6,6692 11,911 20,835 40,037 

10 7,0340 12,119 20,955 40,100 

 

Table 6. The third vibration frequency for various 

values of the material length scale and 

the elastic medium parameters and 

0   
 

UK  
  

0 0,25 0,5 1 

0 9,4247 24,123 45,402 89,325 

1 9,4776 24,144 45,413 89,330 

5 9,6864 24,227 45,457 89,353 

10 9,9411 24,330 45,512 89,380 

 

Figure 1. The variation of the first vibration 

frequency with the nonlocal and the 

material length scale parameters 

 

Figure 2. The variation of the second vibration 

frequency with the nonlocal and the 

material length scale parameters  

 

 

Figure 3. The variation of the third vibration 

frequency with the nonlocal and the 

material length scale parameters 

 

Figures 1-3 display the variation of the first three 

frequencies with the nonlocal parameter ( ) and 

the material length scale parameter (  ). Here, the 

elastic medium parameter is taken as 0UK   since 

the similar figures are obtained for the other values 

of 1, 5, 10UK  . As reported in the previous 

section, the frequency values are very sensitive to 

the nonlocal parameter and the material scale 

parameter. 

 

It can be observed from Figures 1-3 that the 

material scale parameter is more effective on the 

higher modes than on the lower modes as also 

deduced for the nonlocal parameter. It should be 

noted here that when both nonlocal and the scale 
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parameters are zero ( 0   ), the frequency 

values correspond to the classical counterparts. 

 

Figure 4 shows the effect of the elastic medium 

parameter on the first vibration frequency for 

various values of the nonlocal and scale 

parameters. It is clear from the figure that an 

increase of the elastic medium parameter gives a 

rise in the first frequency. The reason of this 

behavior is due to the fact the elastic medium 

increase the stiffness of the system. Also, it should 

be noted here that the similar trend is observed for 

the other modes.  

 

 
 

Figure 4. The variation of the first vibration 

frequency with the dimensionless 

elastic medium parameter 
 

 
 

Figure 5. The variation of the first four vibration 

frequencies with the dimensionless 

elastic medium parameter 

 

Figure 5 plots the variation of the first four 

vibration frequencies as a function of the 

dimensionless nonlocal parameter ( ). In this 

figure, the scale and the elastic medium parameters 

are taken as 0   and 0UK  . It is very 

interesting that the difference between the 

frequency values decreases significantly while the 

nonlocal parameter increases, and all frequency 

values go to the same value with the increase of 

the nonlocal parameter.  

 

4. CONCLUSIONS 
 

In this work, free vibration of an embedded 

nanorod is performed using a newly proposed 

nonlocal strain gradient theory. A frequency 

formula is presented for a fixed-fixed nanorod. The 

effects of the nonlocal parameter, material length 

scale parameter and the elastic medium on free 

vibration characteristics of the nanorod are 

investigated. From the results analyzed above, the 

most important observations are summarized as 

follows: 

 
 

 The frequency values obtained by the classical 

(or local) theory are very different from those 

obtained by the nonlocal strain gradient 

theory. Thus, the classical continuum theory is 

not suitable to analyze the mechanical 

behavior of nanostructures; 

 The nonlocal parameter decreases the 

frequency values whereas the material length 

scale parameter increases the frequencies; 

 The effect of the nonlocal and the material 

scale parameters on the free vibration 

frequencies rises as the mode number 

increases; 

 The vibration frequencies at the different 

modes approach to the same value with the 

increase of the nonlocal parameter; 

 The elastic medium parameter plays an 

important role on free vibration frequencies; 

 The tabulated results are presented for the first 

time in this paper, thus they can be a reference 

for the prospective researchers to validate their 

results. 
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